cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336241 a(n) = (n!)^2 * Sum_{d|n} 1 / (d!)^2.

Original entry on oeis.org

1, 5, 37, 721, 14401, 662401, 25401601, 2034950401, 135339724801, 16461151257601, 1593350922240001, 293575350020198401, 38775788043632640001, 9500068369885892198401, 1757631343928533032960001, 547963926586675321282560001, 126513546505547170185216000001
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 13 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n!)^2 Sum[1/(d!)^2, {d, Divisors[n]}], {n, 1, 17}]
    nmax = 17; CoefficientList[Series[Sum[(BesselI[0, 2 x^(k/2)] - 1), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!^2 // Rest
  • PARI
    a(n) = n!^2*sumdiv(n, d, 1/d!^2); \\ Michel Marcus, Jul 13 2020

Formula

a(n) = (n!)^2 * [x^n] Sum_{k>=1} (BesselI(0,2*x^(k/2)) - 1).
a(n) = (n!)^2 * [x^n] Sum_{k>=1} x^k / ((k!)^2 * (1 - x^k)).