A336244 Triangle read by rows: row n gives coefficients T(n,k), in descending powers of m, of a polynomial Q_n(m) (of degree n - 1) in an expression for the number of subdivisions A(m,n) of a grid with two rows.
1, 1, 1, 1, 5, 2, 1, 12, 29, 6, 1, 22, 131, 206, 24, 1, 35, 385, 1525, 1774, 120, 1, 51, 895, 6585, 19624, 18204, 720, 1, 70, 1792, 21070, 117019, 281260, 218868, 5040, 1, 92, 3234, 55496, 492849, 2210348, 4483436, 3036144, 40320
Offset: 1
Examples
Triangle T(n,k) (with rows n >= 1 and columns k = 1..n) begins 1; 1, 1; 1, 5, 2; 1, 12, 29, 6; 1, 22, 131, 206, 24; ... Q_3(m) = m^2 + 5*m + 2.
Links
- Elina Robeva and Melinda Sun, Bimonotone Subdivisions of Point Configurations in the Plane, arXiv:2007.00877 [math.CO], 2020. See Table 2, p. 5.
- Wikipedia, Faulhaber's formula.
Programs
-
Maple
# We assume the rows indexed by the degree of the polynomials, n = 0,1,2,... A336244row := proc(n) local p, k, s, b; p := 1; b := n -> bernoulli(n, x+1) - bernoulli(n, 1); for k from 1 to n-1 do s := p + add(coeff(p, x, i-1)*b(i)/i, i=1..k-1); p := b(k) + k*s od; seq(coeff(p, x, n-i), i=1..n) end: seq(A336244row(n), n=0..9); # Peter Luschny, Jul 15 2020
-
Mathematica
b[n_] := BernoulliB[n, x + 1] - BernoulliB[n, 1]; b[1] = x; row[n_] := Module[{p = 1, s}, Do[s = p + Sum[Coefficient[p, x, i-1] b[i]/i, {i, 1, k-1}]; p = b[k] + k s, {k, 1, n-1}]; CoefficientList[p, x] // Reverse]; row /@ Range[9] // Flatten (* Jean-François Alcover, Aug 21 2020, after Peter Luschny *)
-
PARI
polf(n) = if (n==0, return(m)); my(p=bernpol(n+1,m)); (subst(p, m, m+1) - subst(p, m, 0))/(n+1); \\ Faulhaber tabl(nn) = {my(p = 1, q); for (n=1, nn, if (n==1, q = p, q = (n-1)*(p + polf(n-2) + sum(i=0, n-3, polcoef(p, i, m)*polf(i)))); print(Vec(q)); p = q;);}
Formula
A(m,n) = (2^(m-2)/(n-1)!) * Sum_{k=1..n} T(n,k)*m^(n-k).
A(m,n) = (2^(m-2)/(n-1)!) * Q_n(m) = A059576(m-1, n-1) (provided the latter is viewed as a square array rather than a triangle).
A(m,n) = (2^(m-2)/(n-2)!) * (Q_(n-1)(m) + Sum_{i=1..m} Q_(n-1)(i)).
A(m,n) = 2*(A(m,n-1) + A(m-1,n) - A(m-1,n-1)) for m > n.
T(n, 1) = 1 and T(n, n) = (n - 1)!.
Conjectures:
(a) T(n,2) = (n - 1)*(3*n - 4)/2.
(b) T(n,3) = (n - 2)*(n - 1)*(27*n^2 - 97*n + 72)/24.
(c) T(n,4) = (n - 3)*(n - 2)*(n - 1)^2*(27*n^2 - 156*n + 208)/48.
(d) T(n, n - 1) = (n - 1)!*Sum_{k=1..n-1} binomial(n-1, k)/k = A103213(n-1).
Comments