A336279 a(n) = Sum_{k=1..n} mu(k)*k^5.
1, -31, -274, -274, -3399, 4377, -12430, -12430, -12430, 87570, -73481, -73481, -444774, 93050, 852425, 852425, -567432, -567432, -3043531, -3043531, 1040570, 6194202, -242141, -242141, -242141, 11639235, 11639235, 11639235, -8871914, -33171914, -61801065
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Array[Sum[MoebiusMu[k]*k^5, {k, #}] &, 32] (* Michael De Vlieger, Jul 15 2020 *)
-
PARI
a(n) = sum(k=1, n, moebius(k)*k^5); \\ Michel Marcus, Jul 15 2020
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A336279(n): if n <= 1: return 1 c, j = 1, 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c -= (j2**2*(j2**2*(j2*(2*j2 - 6) + 5) - 1)-j**2*(j**2*(j*(2*j - 6) + 5) - 1))//12*A336279(k1) j, k1 = j2, n//j2 return c-(n**2*(n**2*(n*(2*n + 6) + 5) - 1)-j**2*(j**2*(j*(2*j - 6) + 5) - 1))//12 # Chai Wah Wu, Apr 04 2023
Formula
From Seiichi Manyama, Apr 03 2023: (Start)
G.f. A(x) satisfies x = Sum_{k>=1} k^5 * (1 - x^k) * A(x^k).
Sum_{k=1..n} k^5 * a(floor(n/k)) = 1. (End)
Comments