cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A336730 Decimal expansion of Sum_{n>=1} log(n)^n / n!.

Original entry on oeis.org

7, 8, 5, 6, 7, 2, 0, 9, 9, 5, 4, 7, 7, 3, 4, 9, 3, 5, 8, 6, 0, 7, 7, 8, 5, 8, 9, 1, 9, 2, 8, 5, 6, 0, 6, 9, 3, 2, 7, 1, 4, 6, 6, 7, 4, 2, 7, 5, 1, 4, 5, 4, 4, 8, 8, 8, 0, 8, 3, 2, 7, 3, 0, 9, 2, 5, 7, 6, 3, 2, 8, 3, 1, 1, 0, 5, 2, 6, 3, 8, 0, 0, 3, 1, 3, 4, 1, 1, 6, 0, 5, 7, 3, 0, 4, 0, 1, 0, 7, 9, 7, 5, 7, 3, 4
Offset: 0

Views

Author

Bernard Schott, Aug 02 2020

Keywords

Comments

With u(n) = log(n)^n / n!, this series is convergent as u(n+1)/u(n) -> 0 when n -> oo.

Examples

			0.785672099547734935860778589192856069327...
		

References

  • Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année, MP, Dunod, 1997, Exercice 3.2.1.r page 279.

Crossrefs

Programs

  • Maple
    evalf(sum(log(n)^n/n!,n=2..infinity),120);
  • PARI
    suminf(n=1, log(n)^n/n!) \\ Michel Marcus, Aug 02 2020

Formula

Equals Sum_{n>=1} log(n)^n / n!.

A336987 Decimal expansion of Sum_{n>=2} sqrt(n)^log(n)/log(n)^sqrt(n).

Original entry on oeis.org

3, 2, 2, 1, 9, 4, 1, 9, 5, 8, 4, 2, 4, 3, 3, 6, 5, 1, 5, 2, 4, 3, 5, 9, 3, 6, 1, 1, 7, 7, 2, 2, 8, 8, 4, 3, 9, 9, 1, 2, 3, 9, 0, 2, 7, 3, 6, 7, 0, 7, 8, 1, 7, 7, 8, 5, 7, 9, 3, 4, 2, 6, 1, 0, 3, 8, 2, 9, 5, 4, 1, 8, 3, 2, 7, 5, 3, 5, 9, 7, 1, 0, 4, 3, 4, 7, 7, 8, 3, 1, 7, 0, 6, 5, 9, 1, 1, 3, 9, 7
Offset: 2

Views

Author

Bernard Schott, Aug 10 2020

Keywords

Comments

The series u(n) = sqrt(n)^log(n)/log(n)^sqrt(n) is convergent because n^2 * u(n) -> 0 when n -> oo.

Examples

			32.219419584243365152435936117722884...
		

References

  • J. Moisan & A. Vernotte, Analyse, Topologie et Séries, Exercices corrigés de Mathématiques Spéciales, Ellipses, 1991, Exercice B-1 a-3 pp. 70, 87-88.

Crossrefs

Programs

  • Maple
    evalf(sum(sqrt(n)^log(n)/log(n)^sqrt(n), n=2..infinity), 120);
  • PARI
    default(realprecision, 100); sumpos(n=2, sqrt(n)^log(n)/log(n)^sqrt(n)) \\ Michel Marcus, Aug 10 2020

Formula

Equals Sum_{n>=2} sqrt(n)^log(n)/log(n)^sqrt(n).

Extensions

a(37)-a(101) from Robert Price, Aug 21 2020
Showing 1-2 of 2 results.