A336295 a(n) = (n!)^n * [x^n] Product_{k>=1} 1/(1 - x^k/k^n).
1, 1, 5, 251, 359200, 25822962624, 141766192358448256, 83301485967496541735457536, 7013555995366382867427754604471779328, 109330254486209621988088555707809713786027354619904, 396335044092985772297627538614627390881554195217999599121962369024
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..30
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k)+b(n-i, min(n-i, i), k)*((i-1)!*binomial(n, i))^k)) end: a:= n-> b(n$3): seq(a(n), n=0..12); # Alois P. Heinz, Jul 27 2023
-
Mathematica
Table[(n!)^n SeriesCoefficient[Product[1/(1 - x^k/k^n), {k, 1, n}], {x, 0, n}], {n, 0, 10}]