A336309 Triangular array read by rows. T(n,k) is the number of labeled rooted unordered binary trees (as in A036774) with path length exactly k, n >= 1, 0 <= k <= C(n,2).
1, 0, 2, 0, 0, 3, 6, 0, 0, 0, 0, 24, 12, 24, 0, 0, 0, 0, 0, 0, 120, 120, 120, 60, 120, 0, 0, 0, 0, 0, 0, 0, 0, 360, 1440, 360, 1440, 720, 720, 360, 720, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 630, 7560, 10080, 10080, 7560, 12600, 7560, 10080, 5040, 5040, 2520, 5040
Offset: 1
Examples
1, 0, 2, 0, 0, 3, 6, 0, 0, 0, 0, 24, 12, 24, 0, 0, 0, 0, 0, 0, 120, 120, 120, 60, 120, 0, 0, 0, 0, 0, 0, 0, 0, 360, 1440, 360, 1440, 720, 720, 360, 720
Crossrefs
Cf. A036774.
Programs
-
Mathematica
nn = 6; f[z_, u_] := Sum[Sum[a[n, k] u^k z^n/n!, {k, 0, Binomial[n, 2]}], {n, 1, nn}]; sol =SolveAlways[Series[0 == f[z, u] - z (1 + f[u z, u] + f[u z, u]^2/2!), {z, 0, nn}], {z, u}];Level[Table[Table[a[n, k], {k, 0, Binomial[n, 2]}], {n, 1, nn}] /. sol, {2}] // Grid
Formula
E.g.f. satisfies A(x,y) = x + x*A(y*x,y) + x*A(y*x,y)^2/2.
Comments