cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A336310 Sum of path lengths over all labeled rooted unordered binary trees.

Original entry on oeis.org

0, 0, 2, 24, 300, 4260, 69120, 1271340, 26233200, 601246800, 15171105600, 418203324000, 12509695598400, 403696590897600, 13982667790291200, 517482647165484000, 20381726051118432000, 851302665544050720000, 37587618060140244096000, 1749369290830388555328000, 85599487854917373617280000
Offset: 0

Views

Author

Geoffrey Critzer, Jul 17 2020

Keywords

Crossrefs

Cf. A336309, A036774 (row sums).

Programs

  • Mathematica
    nn = 20; Range[0, nn]! CoefficientList[ Series[-(((-1 + Sqrt[1 - 2 z - z^2]) (-1 + z + Sqrt[1 - 2 z - z^2]))/(z (-1 + 2 z + z^2))), {z, 0, nn}], z]
  • PARI
    my(z='z+O('z^25)); concat([0,0], Vec(serlaplace(((1 -sqrt(1 -2*z -z^2))*(1 -z -sqrt(1 -2*z -z^2)))/(z*(1 -2*z -z^2))))) \\ Joerg Arndt, Jul 18 2020

Formula

E.g.f.: ((1 -sqrt(1 -2*z -z^2))*(1 -z -sqrt(1 -2*z -z^2)))/(z*(1 -2*z -z^2)).
a(n) = Sum_{k} A336309(n,k)*k, for n>=1.
a(n) ~ n!/2 * (sqrt(2) + 1)^(n+1) * (1 - sqrt((10-sqrt(2))/(Pi*n))). - Vaclav Kotesovec, Jul 17 2020
Showing 1-1 of 1 results.