A336354 Numbers k such that p^2 divides k, where p = A006530(k), the largest prime factor of k, and sigma(k) does not have any prime factor larger than p.
343, 686, 1029, 1372, 1715, 2058, 2744, 3430, 4116, 4489, 5145, 6241, 6860, 8232, 8978, 9261, 10290, 10976, 12482, 13467, 13720, 17956, 18522, 18723, 18769, 20580, 22201, 22445, 24964, 26569, 26934, 31205, 31423, 32761, 32928, 35912, 36481, 37044, 37446, 37538, 40401
Offset: 1
Keywords
Examples
343 = 7^3 is present, as A000203(343) = 400 = 2^4 * 5^2, with none of the prime factors > 7. 1715 = 5 * 7^3 is present, as sigma(1715) = 2400 = 2^5 * 3 * 5^2.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
PARI
isA336354(n) = ((0==A336352(n))&&(1==A319988(n)));
-
PARI
is(n) = {if(n == 1, return(0)); my(f = factor(n), s, fs); if(f[#f~, 2] < 2, return(0)); s = sigma(f); fs = factor(s, f[#f~, 1]); fs[#fs~, 1] <= f[#f~, 1] } \\ David A. Corneth, Jun 27 2024