A336366 Numbers k such that gcd(k, prime(k) + prime(k+1)) = 1.
1, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 29, 31, 37, 39, 41, 43, 47, 49, 51, 53, 59, 61, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 99, 101, 103, 107, 109, 111, 113, 115, 119, 121, 123, 125, 127, 129, 131, 133, 137, 139, 145, 149, 151, 155, 157, 161, 163
Offset: 1
Keywords
Examples
In the following table, p(k) = A000040(k) = prime(k). k p(k) p(k)+p(k+1) gcd 1 2 5 1 2 3 8 4 3 5 12 3 4 7 18 2 5 11 24 1 6 13 30 6 Thus 1 and 5 are in this sequence; 2 and 3 are in A336367; 2 and 11 are in A336368; 3 and 5 are in A336369.
Programs
-
Mathematica
p[n_] := Prime[n]; u = Select[Range[200], GCD[#, p[#] + p[# + 1]] == 1 &] (* A336366 *) v = Select[Range[200], GCD[#, p[#] + p[# + 1]] > 1 &] (* A336367 *) Prime[u] (* A336368 *) Prime[v] (* A336369 *)
-
PARI
isok(m) = gcd(m, prime(m)+prime(m+1)) == 1; \\ Michel Marcus, Jul 20 2020
Comments