cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A336473 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(i) = A278222(j) and A329697(i) = A329697(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 6, 4, 7, 1, 3, 5, 8, 3, 9, 6, 10, 2, 6, 6, 11, 4, 10, 7, 12, 1, 13, 3, 8, 5, 9, 8, 10, 3, 14, 9, 15, 6, 16, 10, 17, 2, 18, 6, 19, 6, 16, 11, 20, 4, 21, 10, 22, 7, 23, 12, 24, 1, 13, 13, 18, 3, 25, 8, 21, 5, 9, 9, 16, 8, 15, 10, 17, 3, 25, 14, 16, 9, 26, 15, 27, 6, 16, 16, 28, 10, 27, 17, 29, 2, 6, 18, 30, 6, 16, 19, 20, 6, 15
Offset: 1

Views

Author

Antti Karttunen, Jul 24 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A278222(n), A329697(n)].
For all i, j: A336460(i) = A336460(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    A329697(n) = if(!bitand(n,n-1),0,1+A329697(n-(n/vecmax(factor(n)[, 1]))));
    Aux336473(n) = [A278222(n), A329697(n)];
    v336473 = rgs_transform(vector(up_to, n, Aux336473(n)));
    A336473(n) = v336473[n];

A347374 Lexicographically earliest infinite sequence such that a(i) = a(j) => A331410(i) = A331410(j) and A000593(i) = A000593(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, 16, 1, 17, 9, 17, 5, 18, 10, 19, 3, 20, 11, 21, 6, 22, 12, 23, 2, 24, 13, 25, 7, 26, 14, 25, 4, 27, 15, 28, 8, 29, 16, 30, 1, 31, 17, 32, 9, 33, 17, 34, 5, 35, 18, 36, 10, 33, 19, 37, 3, 38, 20, 39, 11, 40, 21, 41, 6, 42, 22, 43, 12
Offset: 1

Views

Author

Antti Karttunen, Aug 29 2021

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A000593(n), A331410(n)].
For all i, j: A003602(i) = A003602(j) => a(i) = a(j) => A347249(i) = A347249(j).

Crossrefs

Cf. also A335880, A336390, A336391, A336394 for similar constructions.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000593(n) = sigma(n>>valuation(n, 2));
    A331410(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A331410(f[k,1]+1)))); };
    Aux347374(n) = [A331410(n), A000593(n)];
    v347374 = rgs_transform(vector(up_to, n, Aux347374(n)));
    A347374(n) = v347374[n];

A336392 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(i) = A278222(j) and A336467(i) = A336467(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, 16, 1, 3, 9, 6, 5, 17, 10, 18, 3, 19, 11, 20, 6, 21, 12, 22, 2, 23, 13, 24, 7, 25, 14, 26, 4, 27, 15, 28, 8, 29, 16, 30, 1, 31, 3, 32, 9, 33, 6, 34, 5, 35, 17, 36, 10, 21, 18, 37, 3, 11, 19, 38, 11, 39, 20, 40, 6, 41, 21, 42, 12, 43, 22, 44, 2, 45, 23, 46, 13
Offset: 1

Views

Author

Antti Karttunen, Aug 10 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A278222(n), A336467(n)].
For all i, j: A324400(i) = A324400(j) => A003602(i) = A003602(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    A000265(n) = (n>>valuation(n,2));
    A336467(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]+1))^f[k,2])); };
    Aux336392(n) = [A278222(n), A336467(n)];
    v336392 = rgs_transform(vector(up_to, n, Aux336392(n)));
    A336392(n) = v336392[n];
Showing 1-3 of 3 results.