A336414 Number of divisors of n! with distinct prime multiplicities.
1, 1, 2, 3, 7, 10, 20, 27, 48, 86, 147, 195, 311, 390, 595, 1031, 1459, 1791, 2637, 3134, 4747, 7312, 10766, 12633, 16785, 26377, 36142, 48931, 71144, 82591, 112308, 128023, 155523, 231049, 304326, 459203, 568095, 642446, 812245, 1137063, 1441067, 1612998, 2193307, 2429362
Offset: 0
Keywords
Examples
The first and second columns below are the a(6) = 20 counted divisors of 6! together with their prime signatures. The third column shows the A000005(6!) - a(6) = 10 remaining divisors. 1: () 20: (2,1) | 6: (1,1) 2: (1) 24: (3,1) | 10: (1,1) 3: (1) 40: (3,1) | 15: (1,1) 4: (2) 45: (2,1) | 30: (1,1,1) 5: (1) 48: (4,1) | 36: (2,2) 8: (3) 72: (3,2) | 60: (2,1,1) 9: (2) 80: (4,1) | 90: (1,2,1) 12: (2,1) 144: (4,2) | 120: (3,1,1) 16: (4) 360: (3,2,1) | 180: (2,2,1) 18: (1,2) 720: (4,2,1) | 240: (4,1,1)
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..6245 (n = 0..94 from David A. Corneth)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Divisors[n!],UnsameQ@@Last/@FactorInteger[#]&]],{n,0,15}]
-
PARI
a(n) = sumdiv(n!, d, my(ex=factor(d)[,2]); #vecsort(ex,,8) == #ex); \\ Michel Marcus, Jul 24 2020
Formula
a(n) = A181796(n!).
Extensions
a(21)-a(41) from Alois P. Heinz, Jul 24 2020
Comments