cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336425 Number of ways to choose a divisor with distinct prime exponents of a divisor with distinct prime exponents of n!.

Original entry on oeis.org

1, 1, 3, 5, 24, 38, 132, 195, 570, 1588, 4193, 6086, 14561, 19232, 37142, 106479, 207291, 266871, 549726, 674330, 1465399, 3086598, 5939574, 7182133, 12324512, 28968994, 46819193, 82873443, 165205159, 196666406, 350397910, 406894074, 593725529, 1229814478, 1853300600, 4024414209, 6049714096, 6968090487, 9700557121, 16810076542, 26339337285
Offset: 0

Views

Author

Gus Wiseman, Aug 06 2020

Keywords

Examples

			The a(4) = 24 divisors of divisors:
  1/1  2/1  3/1  4/1  8/1  12/1   24/1
       2/2  3/3  4/2  8/2  12/2   24/2
                 4/4  8/4  12/3   24/3
                      8/8  12/4   24/4
                           12/12  24/8
                                  24/12
                                  24/24
		

Crossrefs

A336422 is the non-factorial generalization.
A130091 lists numbers with distinct prime exponents.
A181796 counts divisors with distinct prime exponents.
A327526 gives the maximum divisor of n with equal prime exponents.
A327498 gives the maximum divisor of n with distinct prime exponents.
A336414 counts divisors of n! with distinct prime exponents.
A336415 counts divisors of n! with equal prime exponents.
A336423 counts chains in A130091, with maximal version A336569.

Programs

  • Mathematica
    strsigQ[n_]:=UnsameQ@@Last/@FactorInteger[n];
    Table[Total[Cases[Divisors[n!],d_?strsigQ:>Count[Divisors[d],e_?strsigQ]]],{n,0,20}]

Extensions

Terms a(21) onward from Max Alekseyev, Nov 07 2024