cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A336569 Number of maximal strict chains of divisors from n to 1 using elements of A130091 (numbers with distinct prime multiplicities).

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 0, 1, 1, 2, 1, 2, 0, 0, 1, 3, 1, 0, 1, 2, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 3, 1, 0, 1, 2, 2, 0, 1, 4, 1, 2, 0, 2, 1, 3, 0, 3, 0, 0, 1, 0, 1, 0, 2, 1, 0, 0, 1, 2, 0, 0, 1, 5, 1, 0, 2, 2, 0, 0, 1, 4, 1, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.

Examples

			The a(n) chains for n = 12, 72, 144, 192 (ones not shown):
  12/3    72/18/2       144/72/18/2       192/96/48/24/12/3
  12/4/2  72/18/9/3     144/72/18/9/3     192/64/32/16/8/4/2
          72/24/12/3    144/48/24/12/3    192/96/32/16/8/4/2
          72/24/8/4/2   144/72/24/12/3    192/96/48/16/8/4/2
          72/24/12/4/2  144/48/16/8/4/2   192/96/48/24/8/4/2
                        144/48/24/8/4/2   192/96/48/24/12/4/2
                        144/72/24/8/4/2
                        144/48/24/12/4/2
                        144/72/24/12/4/2
		

Crossrefs

A336423 is the non-maximal version.
A336570 is the version for chains not necessarily containing n.
A000005 counts divisors.
A001055 counts factorizations.
A001222 counts prime factors with multiplicity.
A007425 counts divisors of divisors.
A032741 counts proper divisors.
A045778 counts strict factorizations.
A071625 counts distinct prime multiplicities.
A074206 counts strict chains of divisors from n to 1.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts chains of divisors.
A336422 counts divisible pairs of divisors, both in A130091.
A336424 counts factorizations using A130091.
A336571 counts divisor sets of elements of A130091.

Programs

  • Mathematica
    strsigQ[n_]:=UnsameQ@@Last/@FactorInteger[n];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    strchs[n_]:=If[n==1,{{}},If[!strsigQ[n],{},Join@@Table[Prepend[#,d]&/@strchs[d],{d,Select[Most[Divisors[n]],strsigQ]}]]];
    Table[Length[fasmax[strchs[n]]],{n,100}]

A336570 Number of maximal sets of proper divisors d|n, d < n, all belonging to A130091 (numbers with distinct prime multiplicities) and forming a divisibility chain.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 4, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 5, 1, 2, 2, 2, 2, 3, 1, 4, 1, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.

Examples

			The a(n) sets for n = 36, 120, 144, 180 (ones not shown):
  {2,18}    {3,12,24}    {2,18,72}       {2,18}
  {3,12}    {5,20,40}    {3,9,18,72}     {3,12}
  {2,4,12}  {2,4,8,24}   {3,12,24,48}    {5,20}
  {3,9,18}  {2,4,8,40}   {3,12,24,72}    {5,45}
            {2,4,12,24}  {2,4,8,16,48}   {2,4,12}
            {2,4,20,40}  {2,4,8,24,48}   {2,4,20}
                         {2,4,8,24,72}   {3,9,18}
                         {2,4,12,24,48}  {3,9,45}
                         {2,4,12,24,72}
		

Crossrefs

A336569 is the version for chains containing n.
A336571 is the non-maximal version.
A000005 counts divisors.
A001055 counts factorizations.
A007425 counts divisors of divisors.
A032741 counts proper divisors.
A045778 counts strict factorizations.
A071625 counts distinct prime multiplicities.
A074206 counts strict chains of divisors from n to 1.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts chains of divisors.
A336422 counts divisible pairs of divisors, both in A130091.
A336424 counts factorizations using A130091.
A336500 counts divisors of n in A130091 with quotient also in A130091.

Programs

  • Mathematica
    strsigQ[n_]:=UnsameQ@@Last/@FactorInteger[n];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    strses[n_]:=If[n==1,{{}},Join@@Table[Append[#,d]&/@strses[d],{d,Select[Most[Divisors[n]],strsigQ]}]];
    Table[Length[fasmax[strses[n]]],{n,100}]

A336499 Irregular triangle read by rows where T(n,k) is the number of divisors of n! with distinct prime multiplicities and a total of k prime factors, counted with multiplicity.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 0, 1, 2, 1, 2, 1, 1, 3, 1, 3, 2, 0, 1, 3, 2, 5, 3, 3, 2, 1, 1, 4, 2, 7, 4, 4, 3, 2, 0, 1, 4, 2, 7, 4, 5, 7, 7, 6, 3, 2, 0, 1, 4, 2, 8, 8, 9, 10, 11, 11, 7, 8, 5, 2, 0, 1, 4, 3, 11, 8, 11, 16, 16, 15, 15, 15, 13, 9, 6, 3, 1, 1, 5, 3, 14, 10, 13, 21, 21, 20, 19, 21, 18, 13, 9, 5, 2, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 03 2020

Keywords

Comments

Row lengths are A022559(n) + 1.

Examples

			Triangle begins:
  1
  1
  1  1
  1  2  0
  1  2  1  2  1
  1  3  1  3  2  0
  1  3  2  5  3  3  2  1
  1  4  2  7  4  4  3  2  0
  1  4  2  7  4  5  7  7  6  3  2  0
  1  4  2  8  8  9 10 11 11  7  8  5  2  0
  1  4  3 11  8 11 16 16 15 15 15 13  9  6  3  1
  1  5  3 14 10 13 21 21 20 19 21 18 13  9  5  2  0
  1  5  3 14 10 14 25 23 27 24 30 28 28 25 20 16 11  5  2  0
Row n = 7 counts the following divisors:
  1  2  4  8   16  48   144  720   {}
     3  9  12  24  72   360  1008
     5     18  40  80   504
     7     20  56  112
           28
           45
           63
		

Crossrefs

A000720 is column k = 1.
A022559 gives row lengths minus one.
A056172 appears to be column k = 2.
A336414 gives row sums.
A336420 is the version for superprimorials.
A336498 is the version counting all divisors.
A336865 is the generalization to non-factorials.
A336866 lists indices of rows with a final 1.
A336867 lists indices of rows with a final 0.
A336868 gives the final terms in each row.
A000110 counts divisors of superprimorials with distinct prime exponents.
A008302 counts divisors of superprimorials by number of prime factors.
A130091 lists numbers with distinct prime exponents.
A181796 counts divisors with distinct prime exponents.
A327498 gives the maximum divisor of n with distinct prime exponents.

Programs

  • Mathematica
    Table[Length[Select[Divisors[n!],PrimeOmega[#]==k&&UnsameQ@@Last/@FactorInteger[#]&]],{n,0,6},{k,0,PrimeOmega[n!]}]

A337104 Number of strict chains of divisors from n! to 1 using terms of A130091 (numbers with distinct prime multiplicities).

Original entry on oeis.org

1, 1, 1, 0, 14, 0, 384, 0, 0, 0, 21077680, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 17 2020

Keywords

Comments

The support appears to be {0, 1, 2, 4, 6, 10}.

Examples

			The a(4) = 14 chains:
  24/1
  24/2/1
  24/3/1
  24/4/1
  24/8/1
  24/12/1
  24/4/2/1
  24/8/2/1
  24/8/4/1
  24/12/2/1
  24/12/3/1
  24/12/4/1
  24/8/4/2/1
  24/12/4/2/1
		

Crossrefs

A336867 appears to be the positions of zeros.
A336868 is the characteristic function (image under A057427).
A336942 is the version for superprimorials (n > 1).
A337105 does not require distinct prime multiplicities.
A337074 does not require chains to end with 1.
A337075 is the version for chains not containing n!.
A000005 counts divisors.
A000142 lists factorial numbers.
A001055 counts factorizations.
A027423 counts divisors of factorial numbers.
A067824 counts chains of divisors starting with n.
A074206 counts chains of divisors from n to 1.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts chains of divisors.
A327498 gives the maximum divisor with distinct prime multiplicities.
A336414 counts divisors of n! with distinct prime multiplicities.
A336423 counts chains using A130091, with maximal case A336569.
A336425 counts divisible pairs of divisors of n!, both in A130091.
A336571 counts chains of divisors 1 < d < n using A130091.
A337071 counts chains of divisors starting with n!.

Programs

  • Mathematica
    strchns[n_]:=If[n==1,1,If[!UnsameQ@@Last/@FactorInteger[n],0,Sum[strchns[d],{d,Select[DeleteCases[Divisors[n],n],UnsameQ@@Last/@FactorInteger[#]&]}]]];
    Table[strchns[n!],{n,0,8}]

Formula

a(n) = A337075(n) whenever A337075(n) != 0.
a(n) = A337074(n)/2 for n > 1.
a(n) = A336423(n!).

A337075 Number of strict chains of divisors in A130091 (numbers with distinct prime multiplicities) starting with a proper divisor of n! and ending with 1.

Original entry on oeis.org

1, 1, 1, 3, 14, 48, 384, 1308, 40288, 933848, 21077680, 75690016, 5471262080, 7964665440, 54595767744, 17948164982144, 3454946386353664, 5010658671663616, 723456523262697984, 950502767770273280, 165679731871366906880, 8443707247468681128448
Offset: 0

Views

Author

Gus Wiseman, Aug 17 2020

Keywords

Examples

			The a(1) = 1 through a(4) = 14 chains (with n! prepended):
  1  2/1  6/1    24/1
          6/2/1  24/2/1
          6/3/1  24/3/1
                 24/4/1
                 24/8/1
                 24/12/1
                 24/4/2/1
                 24/8/2/1
                 24/8/4/1
                 24/12/2/1
                 24/12/3/1
                 24/12/4/1
                 24/8/4/2/1
                 24/12/4/2/1
		

Crossrefs

A336571 is the generalization to not just factorial numbers.
A337104 is the version for chains containing n!.
A000005 counts divisors.
A001055 counts factorizations.
A032741 counts proper divisors.
A071625 counts distinct prime multiplicities.
A074206 counts chains of divisors from n to 1.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts chains of divisors.
A327498 gives the maximum divisor with distinct prime multiplicities.
A336414 counts divisors of n! with distinct prime multiplicities.
A336423 counts chains using A130091, with maximal case A336569.
A336424 counts factorizations using A130091.
A336425 counts divisible pairs of divisors of n!, both in A130091.

Programs

  • Mathematica
    chnstr[n_]:=If[n==1,1,Sum[chnstr[d],{d,Select[Most[Divisors[n]],UnsameQ@@Last/@FactorInteger[#]&]}]];
    Table[chnstr[n!],{n,0,5}]

Formula

a(n) = A337104(n) whenever A337104(n) != 0.
a(n) = A336571(n!).
Showing 1-5 of 5 results.