A336449 Values z of primitive solutions (x, y, z) to the Diophantine equation x^3 + y^3 + 2*z^3 = 2*4^6.
1, 9, 16, 25, 49, 81, 121, 169, 225, 289, -356, 361, 441, 529, 625, 729, 841, -948, 961, 1045, 1089, 1225, 1369, 1521, 1681, -1715, 1849, 1876, 2025, 2209, 2401, 2601, 2809, 3025, 3249, 3481, -3587, 3721, 3969, 4225, 4489, 4761, 5041, 5329, 5625, 5769, 5929
Offset: 1
Keywords
Examples
(-15)^3 + (-27)^3 + 2*25^3 = 11^3 + (-29)^3 + 2*25^3 = 8192, 25 is a term. (-65)^3 + (449)^3 + 2*(-356)^3 = 8192, -356 is a term.
References
- R. K. Guy, Unsolved Problems in Number Theory, D5.
Crossrefs
Programs
-
Mathematica
Clear[t] t = {}; Do[y = (8192 - x^3 - 2z^3)^(1/3) /. (-1)^(1/3) -> -1; If[Abs@x <= Abs@y && IntegerQ[y] && GCD[x, y, z] == 1, AppendTo[t, z]], {z, -5929, 5929}, {x, -Round[(Abs[8192 - 2z^3]/3)^(1/2)], Round[(Abs[8192 - 2z^3]/3)^(1/2)]}] u = Union@t; v = Table[(-1)^n*Floor[(n + 1)/2], {n, 0, 12000}]; Select[v, MemberQ[u, #] &]
Comments