cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336465 Recursive variant of A057723: If n is cubefree, then a(n) = A057723(n), otherwise a(n) = A007947(n) * a(n/A007947(n)).

Original entry on oeis.org

1, 2, 3, 6, 5, 6, 7, 12, 12, 10, 11, 18, 13, 14, 15, 24, 17, 24, 19, 30, 21, 22, 23, 36, 30, 26, 36, 42, 29, 30, 31, 48, 33, 34, 35, 72, 37, 38, 39, 60, 41, 42, 43, 66, 60, 46, 47, 72, 56, 60, 51, 78, 53, 72, 55, 84, 57, 58, 59, 90, 61, 62, 84, 96, 65, 66, 67, 102, 69, 70, 71, 108, 73, 74, 90, 114, 77, 78, 79, 120
Offset: 1

Views

Author

Antti Karttunen, Jul 31 2020

Keywords

Comments

Not multiplicative. The least counterexample is 72 = 8*9: a(72) = 108, while a(8) * a(9) = 12 * 12 = 144. - Amiram Eldar, Sep 09 2023

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; a[1] = 1; a[n_] := a[n] = Module[{fct = FactorInteger[n]}, If[Max[fct[[;; , 2]]] < 3, Times @@ f @@@ fct, r = Times @@ fct[[;; , 1]]; r*a[n/r]]]; Array[a, 100] (* Amiram Eldar, Sep 09 2023 *)
  • PARI
    A336465(n) = if(issquarefree(n), n, my(f=factor(n), r=factorback(f[,1])); if(issquarefree(n/r),r*sigma(n/r),r*A336465(n/r)));

Formula

a(n) = Sum_{k=1..n} (1 - ceiling(n/k^2) + floor(n/k^2)) * mu(k)^2 * (n/k), where mu is the Möbius function (A008683). - Wesley Ivan Hurt, Jan 29 2021

Extensions

Keyword mult removed by Amiram Eldar, Sep 09 2023