A336480 a(n) is the smallest positive k such that Fibonorial(n) + k is a prime.
1, 1, 1, 1, 1, 1, 1, 1, 37, 23, 47, 37, 29, 19, 47, 59, 19, 37, 71, 59, 31, 1, 239, 101, 739, 409, 43, 1, 167, 251, 73, 71, 419, 1567, 107, 83, 223, 191, 227, 449, 97, 173, 103, 523, 79, 137, 223, 1163, 661, 103, 103, 541, 227, 2383, 433, 71, 1069, 643, 251
Offset: 1
Keywords
Examples
For n=5, Fibonorial(5) + 1 = 30 + 1 = 31 is a prime.
Programs
-
Mathematica
Table[(NextPrime[Fibonorial[n]]-Fibonorial[n]),{n,1,50}] NextPrime[#]-#&/@Fibonorial[Range[60]] (* Harvey P. Dale, Dec 24 2023 *)
-
PARI
f(n) = prod(i=1, n, fibonacci(i)); \\ A003266 a(n) = my(fn=f(n)); nextprime(fn+1) - fn; \\ Michel Marcus, Jul 23 2020