cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336482 Total number of left-to-right maxima in all compositions of n.

Original entry on oeis.org

0, 1, 2, 5, 11, 24, 51, 108, 226, 471, 976, 2015, 4146, 8508, 17418, 35590, 72597, 147868, 300797, 611202, 1240690, 2516268, 5099242, 10326282, 20897848, 42267257, 85442478, 172635651, 348651294, 703836046, 1420315254, 2865122304, 5777735296, 11647641296
Offset: 0

Views

Author

Alois P. Heinz, Jul 22 2020

Keywords

Examples

			a(4) = 11: (1)111, (1)1(2), (1)(2)1, (2)11, (2)2, (1)(3), (3)1, (4).
		

Crossrefs

Cf. A000254 (the same for permutations of [n]), A225095, A336484, A336511, A336718, A382312.

Programs

  • Maple
    b:= proc(n, m, c) option remember; `if`(n=0, c, add(
          b(n-j, max(m, j), c+`if`(j>m, 1, 0)), j=1..n))
        end:
    a:= n-> b(n, -1, 0):
    seq(a(n), n=0..50);
  • Mathematica
    b[n_, m_, c_] := b[n, m, c] = If[n == 0, c, Sum[
         b[n - j, Max[m, j], c + If[j > m, 1, 0]], {j, 1, n}]];
    a[n_] := b[n, -1, 0];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 04 2022, after Alois P. Heinz *)
  • PARI
    T_xy(max_row) = {my(N=max_row+1, x='x+O('x^N), h= prod(i=1,N, 1 + y*x^i *(1-x)/(1-2*x+x^(i+1)))); h}
    P_xy(N) = Pol(T_xy(N), {x})
    B_x(N) = {my(cx = deriv(P_xy(N), y), y=1); Vecrev(eval(cx))}
    B_x(30) \\ John Tyler Rascoe, Mar 22 2025

Formula

a(n) = Sum_{k>0} A382312(n,k)*k. - John Tyler Rascoe, Mar 22 2025