cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336521 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) is the coefficient of x^(k*n) in expansion of ( (1 + x)/(1 - x) )^n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 8, 1, 1, 2, 16, 38, 1, 1, 2, 24, 146, 192, 1, 1, 2, 32, 326, 1408, 1002, 1, 1, 2, 40, 578, 4672, 14002, 5336, 1, 1, 2, 48, 902, 11008, 69002, 142000, 28814, 1, 1, 2, 56, 1298, 21440, 216002, 1038984, 1459810, 157184, 1, 1, 2, 64, 1766, 36992, 525002, 4320608, 15856206, 15158272, 864146, 1
Offset: 0

Views

Author

Seiichi Manyama, Jul 24 2020

Keywords

Examples

			Square array begins:
  1,    1,     1,     1,      1,      1, ...
  1,    2,     2,     2,      2,      2, ...
  1,    8,    16,    24,     32,     40, ...
  1,   38,   146,   326,    578,    902, ...
  1,  192,  1408,  4672,  11008,  21440, ...
  1, 1002, 14002, 69002, 216002, 525002, ...
		

Crossrefs

Column k=0-3 give A000012, A123164, A103885, A333715.
Main diagonal gives A336522.

Programs

  • Mathematica
    T[n_, 0] := 1; T[n_, k_] := Sum[Binomial[n, j] * Binomial[k*n + j - 1, n - 1], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Jul 24 2020 *)

Formula

T(n,k) = (1/k) * [x^n] ( (1 + x)/(1 - x) )^(k*n) for k > 0 and n > 0.
T(n,k) = Sum_{j=0..n} binomial(n,j) * binomial(k*n+j-1,n-1).
T(n,k) = (1/k) * Sum_{j=0..n} binomial(k*n,n-j) * binomial(k*n+j-1,j) for k > 0 and n > 0.
T(n,k) = Sum_{j=1..n} 2^j * binomial(n,j) * binomial(k*n-1,j-1) for n > 0.
T(n,k) = binomial(k*n-1, n-1)*hypergeom([-n, k*n], [1+(k-1)*n], -1) for k > 0. - Stefano Spezia, Aug 09 2025