cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A336537 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n^2+k+1,n)/(n^2+k+1).

Original entry on oeis.org

1, 2, 10, 134, 3298, 122762, 6208970, 399606286, 31331798914, 2902190030354, 310441644900682, 37685712807847062, 5120833751373831138, 770270980249401539482, 127088854993223378639498, 22824507222500649365932062, 4432992797251355031727570434, 925899965014326913556521154594
Offset: 0

Views

Author

Seiichi Manyama, Jul 25 2020

Keywords

Crossrefs

Main diagonal of A336534.

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[2^k * Binomial[n, k] * Binomial[n^2, k - 1], {k, 1, n}] / n; Array[a, 18, 0] (* Amiram Eldar, Jul 25 2020 *)
  • PARI
    {a(n) = sum(k=0, n, binomial(n, k) * binomial(n^2+k+1, n)/(n^2+k+1))}
    
  • PARI
    {a(n) = if(n==0, 1, sum(k=1, n, 2^k*binomial(n, k) * binomial(n^2, k-1)/n))}
    
  • PARI
    {a(n) = sum(k=0, n, binomial(n^2+1, k)*binomial((n+1)*n-k, n-k))/(n^2+1)}

Formula

a(n) = (1/n) * Sum_{k=1..n} 2^k * binomial(n,k) * binomial(n^2,k-1) for n > 0.
a(n) = (1/(n^2+1)) * Sum_{k=0..n} binomial(n^2+1,k) * binomial((n+1)*n-k,n-k).
a(n) ~ 2^(n - 1/2) * exp(n) * n^(n - 5/2) / sqrt(Pi). - Vaclav Kotesovec, Jul 31 2021
a(n) = 2*hypergeom([1-n, -n^2], [2], 2) for n > 0. - Stefano Spezia, Aug 09 2025

A336521 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) is the coefficient of x^(k*n) in expansion of ( (1 + x)/(1 - x) )^n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 8, 1, 1, 2, 16, 38, 1, 1, 2, 24, 146, 192, 1, 1, 2, 32, 326, 1408, 1002, 1, 1, 2, 40, 578, 4672, 14002, 5336, 1, 1, 2, 48, 902, 11008, 69002, 142000, 28814, 1, 1, 2, 56, 1298, 21440, 216002, 1038984, 1459810, 157184, 1, 1, 2, 64, 1766, 36992, 525002, 4320608, 15856206, 15158272, 864146, 1
Offset: 0

Views

Author

Seiichi Manyama, Jul 24 2020

Keywords

Examples

			Square array begins:
  1,    1,     1,     1,      1,      1, ...
  1,    2,     2,     2,      2,      2, ...
  1,    8,    16,    24,     32,     40, ...
  1,   38,   146,   326,    578,    902, ...
  1,  192,  1408,  4672,  11008,  21440, ...
  1, 1002, 14002, 69002, 216002, 525002, ...
		

Crossrefs

Column k=0-3 give A000012, A123164, A103885, A333715.
Main diagonal gives A336522.

Programs

  • Mathematica
    T[n_, 0] := 1; T[n_, k_] := Sum[Binomial[n, j] * Binomial[k*n + j - 1, n - 1], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Jul 24 2020 *)

Formula

T(n,k) = (1/k) * [x^n] ( (1 + x)/(1 - x) )^(k*n) for k > 0 and n > 0.
T(n,k) = Sum_{j=0..n} binomial(n,j) * binomial(k*n+j-1,n-1).
T(n,k) = (1/k) * Sum_{j=0..n} binomial(k*n,n-j) * binomial(k*n+j-1,j) for k > 0 and n > 0.
T(n,k) = Sum_{j=1..n} 2^j * binomial(n,j) * binomial(k*n-1,j-1) for n > 0.
T(n,k) = binomial(k*n-1, n-1)*hypergeom([-n, k*n], [1+(k-1)*n], -1) for k > 0. - Stefano Spezia, Aug 09 2025
Showing 1-2 of 2 results.