cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336534 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} binomial(n,j) * binomial(k*n+j+1,n)/(k*n+j+1).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 2, 6, 2, 1, 2, 10, 22, 2, 1, 2, 14, 66, 90, 2, 1, 2, 18, 134, 498, 394, 2, 1, 2, 22, 226, 1482, 4066, 1806, 2, 1, 2, 26, 342, 3298, 17818, 34970, 8558, 2, 1, 2, 30, 482, 6202, 52450, 226214, 312066, 41586, 2, 1, 2, 34, 646, 10450, 122762, 881970, 2984206, 2862562, 206098, 2
Offset: 0

Views

Author

Seiichi Manyama, Jul 25 2020

Keywords

Examples

			Square array begins:
  1,   1,    1,     1,     1,      1, ...
  2,   2,    2,     2,     2,      2, ...
  2,   6,   10,    14,    18,     22, ...
  2,  22,   66,   134,   226,    342, ...
  2,  90,  498,  1482,  3298,   6202, ...
  2, 394, 4066, 17818, 52450, 122762, ...
		

Crossrefs

Columns k=0-3 give A040000, A006318, A027307, A144097.
If Michael D. Weiner's conjecture on A260332 is correct, column 4 is A260332 for n > 0.
Main diagonal gives A336537.

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[n, j] * Binomial[k*n+j+1, n]/(k*n+j+1), {j, 0, n}]; Table[T[k, n-k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 01 2021 *)
  • PARI
    T(n, k) = sum(j=0, n, binomial(k*n+1, j)*binomial((k+1)*n-j, n-j))/(k*n+1);

Formula

G.f. A_k(x) of column k satisfies A_k(x) = 1 + x * A_k(x)^k * (1 + A_k(x)).
T(n,k) = (1/n) * Sum_{j=1..n} 2^j * binomial(n,j) * binomial(k*n,j-1) for n > 0.
T(n,k) = (1/(k*n+1)) * Sum_{j=0..n} binomial(k*n+1,j) * binomial((k+1)*n-j,n-j).
T(n,k) = binomial(1+k*n, n)*hypergeom([-n, 1+k*n], [2+(k-1)*n], -1)/(1 + k*n) for k > 0. - Stefano Spezia, Aug 09 2025