A336579 Sum of prime parts, counted without multiplicity, in all compositions of n.
0, 0, 2, 7, 14, 38, 83, 193, 421, 917, 1969, 4210, 8908, 18763, 39287, 81940, 170270, 352726, 728663, 1501711, 3088326, 6339424, 12991312, 26583389, 54323352, 110876435, 226057023, 460432903, 936963134, 1905110662, 3870698364, 7858803605, 15945759386
Offset: 0
Keywords
Examples
a(4) = 2 + 2 + 2 + 2 + 3 + 3 = 14: 1111, 11(2), 1(2)1, (2)11, (2)2, 1(3), (3)1, 4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(n=0, [p!, 0], `if`(i<1, 0, add((p-> [0, `if`(j>0 and isprime(i), p[1]*i, 0)]+p)(b(n-i*j, i-1, p+j)/j!), j=0..n/i))) end: a:= n-> b(n$2, 0)[2]: seq(a(n), n=0..38);
-
Mathematica
b[n_, i_, p_] := b[n, i, p] = If[n == 0, {p!, 0}, If[i < 1, {0, 0}, Sum[Function[q, {0, If[j > 0 && PrimeQ[i], q[[1]]*i, 0]} + q][b[n - i*j, i - 1, p + j]/j!], {j, 0, n/i}]]]; a[n_] := b[n, n, 0][[2]]; Table[a[n], {n, 0, 38}] (* Jean-François Alcover, Mar 17 2022, after Alois P Heinz *)