cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336579 Sum of prime parts, counted without multiplicity, in all compositions of n.

Original entry on oeis.org

0, 0, 2, 7, 14, 38, 83, 193, 421, 917, 1969, 4210, 8908, 18763, 39287, 81940, 170270, 352726, 728663, 1501711, 3088326, 6339424, 12991312, 26583389, 54323352, 110876435, 226057023, 460432903, 936963134, 1905110662, 3870698364, 7858803605, 15945759386
Offset: 0

Views

Author

Alois P. Heinz, Jul 26 2020

Keywords

Examples

			a(4) = 2 + 2 + 2 + 2 + 3 + 3 = 14: 1111, 11(2), 1(2)1, (2)11, (2)2, 1(3), (3)1, 4.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, [p!, 0],
          `if`(i<1, 0, add((p-> [0, `if`(j>0 and isprime(i),
           p[1]*i, 0)]+p)(b(n-i*j, i-1, p+j)/j!), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0)[2]:
    seq(a(n), n=0..38);
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[n == 0, {p!, 0},
         If[i < 1, {0, 0}, Sum[Function[q, {0, If[j > 0 && PrimeQ[i],
         q[[1]]*i, 0]} + q][b[n - i*j, i - 1, p + j]/j!], {j, 0, n/i}]]];
    a[n_] := b[n, n, 0][[2]];
    Table[a[n], {n, 0, 38}] (* Jean-François Alcover, Mar 17 2022, after Alois P Heinz *)