cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336649 Sum of divisors of A336651(n) (odd part of n divided by its largest squarefree divisor).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 6, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 8, 6, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 6, 1, 1, 1, 1, 1, 40, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 8, 4, 6, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jul 30 2020

Keywords

Crossrefs

Programs

  • Mathematica
    f[2, e_] := 1; f[p_, e_] := (p^e - 1)/(p-1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 07 2020 *)
  • PARI
    A336649(n) = { my(f=factor(n)); prod(i=1, #f~, if((2==f[i,1])||(1==f[i,2]),1,(((f[i,1]^(f[i,2]))-1) / (f[i,1]-1)))); };
    
  • PARI
    A000265(n) = (n>>valuation(n,2));
    A335341(n) = if(1==n,n,sigma(n/factorback(factorint(n)[, 1])));
    A336649(n) = A335341(A000265(n));

Formula

Multiplicative with a(2^e) = 1, a(p^1) = 1 and a(p^e) = (p^e - 1)/(p-1) if e > 1.
a(n) = A000203(A336651(n)) = A335341(A000265(n)).
a(n) = A336652(n) / A204455(n).
Dirichlet g.f.: zeta(s-1) * zeta(s) * (1 - 1/(1-2^s+2^(2*s-1))) * Product_{p prime} (1 - 1/p^(s-1) + 1/p^(2*s-1)). - Amiram Eldar, Dec 18 2023