cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A336651 Odd part of n divided by its largest squarefree divisor.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 5, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 5, 1, 1, 1, 1, 1, 27, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 7, 3, 5, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jul 30 2020

Keywords

Comments

The name can be parsed either as "Odd part of {n divided by its largest squarefree divisor}" or "Odd part of n, divided by its largest squarefree divisor". Because A000265 and A003557 commute, both interpretations yield equal results.

Crossrefs

Programs

  • Mathematica
    f[2, e_] := 1; f[p_, e_] := p^(e-1); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 07 2020 *)
  • PARI
    A336651(n) = { my(f=factor(n)); prod(i=1, #f~, if(2==f[i,1],1,f[i,1]^(f[i,2]-1))); };

Formula

Multiplicative with a(2^e) = 1, and for odd primes p, a(p^e) = p^(e-1).
a(n) = A003557(A000265(n)) = A000265(A003557(n)).
a(n) = A000265(n) / A204455(n).
A000203(a(n)) = A336649(n).
Dirichlet g.f.: (1 - 1/(2^s-1)^2) * zeta(s-1) * Product_{p prime} (1 - 1/p^(s-1) + 1/p^s). - Amiram Eldar, Sep 14 2023

A336652 Sum of positive divisors of odd part of n that are divisible by every (odd) prime dividing it: a(n) = A057723(A000265(n)).

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 1, 12, 5, 11, 3, 13, 7, 15, 1, 17, 12, 19, 5, 21, 11, 23, 3, 30, 13, 39, 7, 29, 15, 31, 1, 33, 17, 35, 12, 37, 19, 39, 5, 41, 21, 43, 11, 60, 23, 47, 3, 56, 30, 51, 13, 53, 39, 55, 7, 57, 29, 59, 15, 61, 31, 84, 1, 65, 33, 67, 17, 69, 35, 71, 12, 73, 37, 90, 19, 77, 39, 79, 5, 120, 41, 83, 21, 85, 43
Offset: 1

Views

Author

Antti Karttunen, Jul 30 2020

Keywords

Crossrefs

Programs

  • Mathematica
    f[2, e_] := 1; f[p_, e_] := (p^(e+1) - 1)/(p-1) - 1; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 07 2020 *)
  • PARI
    A336652(n) = if(1==n,n,my(f=factor(n)); prod(i=1,#f~,if(2==f[i,1],1,-1+(((f[i,1]^(1+f[i,2]))-1) / (f[i,1]-1)))));

Formula

Multiplicative with a(2^e) = 1, and for odd primes p, a(p^e) = (p + p^2 + ... + p^e) = sigma(p^e)-1.
a(n) = A057723(A000265(n)).
a(n) = A204455(n) * A336649(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/21) * Product_{p prime} (1 - 1/p^2 + 1/p^3) = (Pi^2/21) * A330596 = 0.3517974711... . - Amiram Eldar, Nov 12 2022

A360163 a(n) is the sum of the square roots of the divisors of n that are odd squares.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 6, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 8, 6, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 6, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 29 2023

Keywords

Comments

First differs from A336649 at n = 27.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(Floor[e/2] + 1) - 1)/(p - 1); f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 2, 1, (f[i, 1]^(floor(f[i, 2]/2)+1) - 1)/(f[i, 1] - 1))); }

Formula

a(n) = Sum_{d|n, d odd square} sqrt(d).
a(n) = (A069290(n) + A347176(n))/2.
a(n) = A069290(n) if n is not a multiple of 4.
Multiplicative with a(2^e) = 1, and a(p^e) = (p^(floor(e/2)+1)-1)/(p-1) for p > 2.
Dirichlet g.f.: zeta(s)*zeta(2*s-1)*(1-2^(1-2*s)).
Sum_{k=1..n} a(k) ~ (n/4) * (log(n) + 3*gamma - 1 + 2*log(2)), where gamma is Euler's constant (A001620).

A360164 a(n) is the sum of the square roots of the unitary divisors of n that are odd squares.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 8, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 6, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 29 2023

Keywords

Comments

First differs from A336649 at n = 27.
The unitary analog of A360163.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], 1, p^(e/2) + 1]; f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 2, 1, if(f[i, 2]%2, 1, f[i, 1]^(f[i, 2]/2) + 1))); }

Formula

a(n) = Sum_{d|n, gcd(d, n/d)=1, d odd square} sqrt(d).
a(n) = A360162(n) if n is not of the form (2*m - 1)*4^k where m >= 1, k >= 1 (A108269).
Multiplicative with a(2^e) = 1, and for p > 2, a(p^e) = p^(e/2) + 1 if e is even and 1 if e is odd.
Dirichlet g.f.: (zeta(s)*zeta(2*s-1)/zeta(3*s-1))*(2^(3*s)-2^(s+1))/(2^(3*s)-2).
Sum_{k=1..n} a(k) ~ (2*n/Pi^2)*(log(n) + 3*gamma - 1 + log(2) - 3*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620).

A383717 Dirichlet g.f.: Product_{p prime} (1 + 1/p^(s-1) + 1/p^(2*s-1)).

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 0, 3, 10, 11, 6, 13, 14, 15, 0, 17, 6, 19, 10, 21, 22, 23, 0, 5, 26, 0, 14, 29, 30, 31, 0, 33, 34, 35, 6, 37, 38, 39, 0, 41, 42, 43, 22, 15, 46, 47, 0, 7, 10, 51, 26, 53, 0, 55, 0, 57, 58, 59, 30, 61, 62, 21, 0, 65, 66, 67, 34, 69, 70, 71, 0, 73
Offset: 1

Views

Author

Vaclav Kotesovec, May 07 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e < 3, p, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 07 2025 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X*p + X^2*p))[n], ", "))

Formula

Sum_{k=1..n} a(k) ~ c * n^2/2, where c = Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4) = 0.684286924186862318141968725791218083472312736723163777284618226290055...
Multiplicative with a(p^e) = p is e <= 2, and 0 otherwise. - Amiram Eldar, May 07 2025
Showing 1-5 of 5 results.