A336687 Numbers m such that tau(sigma(m)) and sigma(tau(m)) both divide m, where tau(m) is the number of divisors function (A000005) and sigma(m) is the sum of divisors function (A000203).
1, 3, 4, 12, 64, 84, 140, 144, 162, 192, 336, 360, 420, 468, 480, 576, 600, 644, 720, 780, 1008, 1344, 1512, 1584, 1600, 1740, 1872, 2160, 2240, 2448, 2592, 2736, 2880, 2884, 3136, 3240, 3888, 4032, 4158, 4228, 4464, 4608, 4800, 5040, 5115, 5184, 5328, 5670, 6060, 6192, 6336
Offset: 1
Keywords
Examples
For 84: tau(84) = 12 and sigma(12) = 28 with 84/28 = 3. Also, sigma(84) = 224 and tau(224) = 12 with 84/12 = 7. Hence, 84 is a term.
Programs
-
Maple
with(numtheory): filter:= m-> irem(m, tau(sigma(m)))=0 and irem(m, sigma(tau(m)))=0: select(filter, [$1..7000])[];
-
Mathematica
Select[Range[6400], And @@ Divisible[#, {DivisorSigma[0, DivisorSigma[1, #]], DivisorSigma[1, DivisorSigma[0, #]]}] &] (* Amiram Eldar, Jul 31 2020 *)
-
PARI
isok(m) = !(m % numdiv(sigma(m))) && !(m % sigma(numdiv(m))); \\ Michel Marcus, Aug 02 2020
Comments