cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A336694 a(n) = A329697(1+sigma(n)), where A329697 is totally additive with a(2) = 0 and a(p) = 1 + a(p-1) for odd primes.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 2, 0, 2, 3, 2, 3, 2, 2, 2, 0, 3, 1, 3, 4, 3, 3, 2, 3, 0, 4, 2, 4, 3, 3, 3, 0, 4, 3, 4, 3, 3, 3, 4, 4, 4, 2, 3, 2, 4, 3, 4, 3, 3, 4, 3, 4, 3, 4, 3, 4, 4, 4, 3, 4, 4, 2, 4, 0, 2, 4, 4, 5, 2, 4, 3, 4, 3, 4, 3, 5, 2, 4, 4, 3, 3, 5, 2, 4, 4, 5, 4, 4, 4, 5, 3, 4, 5, 4, 4, 5, 4, 4, 4, 4, 3, 5, 4, 5, 2
Offset: 1

Views

Author

Antti Karttunen, Jul 31 2020

Keywords

Crossrefs

Programs

Formula

a(n) = A329697(1+A000203(n)) = A329697(A088580(n)) = A329697(A332459(n)).

A336692 Binary weight of 1+sigma(n).

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 2, 1, 3, 3, 3, 4, 4, 3, 3, 1, 3, 2, 3, 4, 2, 3, 3, 5, 1, 4, 3, 4, 5, 3, 2, 1, 3, 5, 3, 4, 4, 5, 4, 5, 4, 3, 4, 4, 5, 3, 3, 6, 4, 5, 3, 4, 5, 5, 3, 5, 3, 5, 5, 4, 6, 3, 4, 1, 4, 3, 3, 7, 3, 3, 3, 3, 4, 5, 6, 4, 3, 4, 3, 6, 5, 7, 4, 4, 5, 3, 5, 5, 5, 6, 4, 4, 2, 3, 5, 7, 4, 4, 5, 5, 5, 5, 4, 5, 3
Offset: 1

Views

Author

Antti Karttunen, Jul 31 2020

Keywords

Crossrefs

Programs

  • PARI
    A336692(n) = hammingweight(1+sigma(n));

Formula

a(n) = A000120(1+A000203(n)) = A000120(A088580(n)) = A000120(A332459(n)).

A336695 a(n) = A331410(1+sigma(n)), where A331410 is totally additive with a(2) = 0 and a(p) = 1 + a(p+1) for odd primes.

Original entry on oeis.org

0, 0, 2, 0, 1, 2, 2, 0, 1, 3, 2, 4, 3, 4, 4, 0, 3, 2, 2, 3, 3, 4, 4, 2, 0, 3, 3, 4, 1, 5, 3, 0, 2, 4, 2, 2, 3, 2, 4, 3, 3, 3, 4, 5, 3, 5, 2, 6, 4, 2, 5, 4, 4, 4, 5, 4, 4, 3, 2, 4, 3, 3, 4, 0, 5, 6, 3, 1, 3, 6, 5, 2, 5, 4, 6, 3, 3, 4, 4, 5, 2, 1, 5, 6, 5, 4, 4, 4, 3, 4, 5, 4, 4, 6, 4, 4, 4, 3, 4, 5, 3, 2, 4, 5, 4
Offset: 1

Views

Author

Antti Karttunen, Jul 31 2020

Keywords

Crossrefs

Programs

Formula

a(n) = A331410(1+A000203(n)) = A331410(A088580(n)) = A331410(A332459(n)).

A336693 Period of binary representation of 1/(1+sigma(n)).

Original entry on oeis.org

1, 1, 4, 1, 3, 12, 6, 1, 3, 18, 12, 28, 4, 20, 20, 1, 18, 4, 6, 14, 10, 36, 20, 60, 1, 14, 20, 18, 5, 9, 10, 1, 21, 20, 21, 11, 12, 60, 18, 12, 14, 48, 12, 8, 39, 9, 21, 100, 28, 23, 9, 30, 20, 110, 9, 110, 54, 12, 60, 156, 6, 48, 12, 1, 8, 28, 22, 7, 48, 28, 9, 21, 20, 44, 100, 46, 48, 156, 54, 40, 60, 7, 8, 60
Offset: 1

Views

Author

Antti Karttunen, Jul 31 2020

Keywords

Crossrefs

Programs

Formula

a(n) = A007733(1+A000203(n)) = A007733(A088580(n)) = A007733(A332459(n)).

A336696 Sum of odd divisors of 1+sigma(n).

Original entry on oeis.org

1, 1, 6, 1, 8, 14, 13, 1, 8, 20, 14, 30, 24, 31, 31, 1, 20, 6, 32, 44, 48, 38, 31, 62, 1, 44, 42, 80, 32, 74, 48, 1, 57, 72, 57, 24, 56, 62, 80, 112, 44, 98, 78, 108, 80, 74, 57, 156, 30, 48, 74, 156, 72, 133, 74, 133, 121, 112, 62, 183, 104, 98, 192, 1, 108, 180, 96, 128, 98, 180, 74, 57, 124, 144, 156, 192, 98
Offset: 1

Views

Author

Antti Karttunen, Jul 31 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[Divisors[1+DivisorSigma[1,n]],OddQ]],{n,80}] (* Harvey P. Dale, Jan 01 2022 *)
  • PARI
    A000593(n) = sigma(n>>valuation(n, 2));
    A336696(n) = A000593(1+sigma(n));

Formula

a(n) = A000593(1+A000203(n)) = A000593(A088580(n)) = A000593(A332459(n)).

A337198 Number of distinct prime factors in A337194(n) = 1+A000265(sigma(n)), where A000265(k) gives the odd part of k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 20 2020

Keywords

Comments

The first 3 occurs at a(137).

Crossrefs

Programs

Formula

a(n) = A001221(A337194(n)) = 1 + A001221(A336698(n)).

A336924 a(n) = spf(1+sigma(n)), where spf is the smallest prime factor and sigma is the sum of divisors function.

Original entry on oeis.org

2, 2, 5, 2, 7, 13, 3, 2, 2, 19, 13, 29, 3, 5, 5, 2, 19, 2, 3, 43, 3, 37, 5, 61, 2, 43, 41, 3, 31, 73, 3, 2, 7, 5, 7, 2, 3, 61, 3, 7, 43, 97, 3, 5, 79, 73, 7, 5, 2, 2, 73, 3, 5, 11, 73, 11, 3, 7, 61, 13, 3, 97, 3, 2, 5, 5, 3, 127, 97, 5, 73, 2, 3, 5, 5, 3, 97, 13, 3, 11, 2, 127, 5, 3, 109, 7, 11, 181, 7, 5, 113, 13
Offset: 1

Views

Author

Antti Karttunen, Aug 09 2020

Keywords

Crossrefs

Programs

  • PARI
    A336924(n) = (factor((1+sigma(n)))[1, 1]);

Formula

a(n) = A020639(1+A000203(n)) = A020639(A088580(n)).

A336925 Lexicographically earliest infinite sequence such that a(i) = a(j) => A336147(1+sigma(i)) = A336147(1+sigma(j)), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 5, 1, 6, 7, 4, 8, 9, 2, 2, 1, 7, 10, 11, 12, 13, 14, 2, 15, 1, 12, 16, 17, 18, 19, 13, 1, 3, 20, 3, 21, 22, 15, 17, 23, 12, 24, 9, 25, 26, 19, 3, 2, 27, 28, 19, 13, 20, 29, 19, 29, 5, 23, 15, 4, 11, 24, 30, 1, 25, 31, 32, 33, 24, 31, 19, 6, 9, 34, 2, 35, 24, 4, 5, 36, 37, 33, 25, 9, 38, 39, 29, 40, 23, 41, 42, 4, 43, 31, 29, 44, 13, 45, 46, 47, 48, 49, 30
Offset: 1

Views

Author

Antti Karttunen, Aug 10 2020

Keywords

Comments

Restricted growth sequence transform of the function f(n) = A336147(A088580(n)).
For all i, j:
A324400(i) = A324400(j) => a(i) = a(j),
a(i) = a(j) => A336691(i) = A336691(j),
a(i) = a(j) => A336924(i) = A336924(j).

Crossrefs

Cf. also A336926.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A020639(n) = if(1==n, n, factor(n)[1, 1]);
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A122111(n) = if(1==n,n,my(f=factor(n), es=Vecrev(f[,2]),is=concat(apply(primepi,Vecrev(f[,1])),[0]),pri=0,m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m));
    A278221(n) = A046523(A122111(n));
    Aux336147(n) = [A020639(n),A278221(n)];
    v336925 = rgs_transform(vector(up_to, n, Aux336147(1+sigma(n))));
    A336925(n) = v336925[n];
Showing 1-8 of 8 results.