A336725 A(n,k) is the n-th number that is a sum of k positive k-th powers; square array A(n,k), n>=1, k>=1, read by antidiagonals.
1, 2, 2, 3, 5, 3, 4, 10, 8, 4, 5, 19, 17, 10, 5, 6, 36, 34, 24, 13, 6, 7, 69, 67, 49, 29, 17, 7, 8, 134, 132, 98, 64, 36, 18, 8, 9, 263, 261, 195, 129, 84, 43, 20, 9, 10, 520, 518, 388, 258, 160, 99, 55, 25, 10, 11, 1033, 1031, 773, 515, 321, 247, 114, 62, 26, 11, 12, 2058, 2056, 1542, 1028, 642, 384, 278, 129, 66, 29, 12
Offset: 1
Examples
Square array A(n,k) begins: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... 2, 5, 10, 19, 36, 69, 134, 263, 520, 1033, ... 3, 8, 17, 34, 67, 132, 261, 518, 1031, 2056, ... 4, 10, 24, 49, 98, 195, 388, 773, 1542, 3079, ... 5, 13, 29, 64, 129, 258, 515, 1028, 2053, 4102, ... 6, 17, 36, 84, 160, 321, 642, 1283, 2564, 5125, ... 7, 18, 43, 99, 247, 384, 769, 1538, 3075, 6148, ... 8, 20, 55, 114, 278, 734, 896, 1793, 3586, 7171, ... 9, 25, 62, 129, 309, 797, 2193, 2048, 4097, 8194, ... 10, 26, 66, 164, 340, 860, 2320, 6568, 4608, 9217, ...
Links
- Alois P. Heinz, Antidiagonals n = 1..141, flattened
Crossrefs
Programs
-
Maple
A:= proc() local l, w, A; l, w, A:= proc() [] end, proc() [] end, proc(n, k) option remember; local b; b:= proc(x, y) option remember; `if`(x=0, {0}, `if`(y<1, {}, {b(x, y-1)[], map(t-> t+l(k)[y], b(x-1, y))[]})) end; while nops(w(k)) < n do forget(b); l(k):= [l(k)[], (nops(l(k))+1)^k]; w(k):= sort([select(h-> h
-
Mathematica
nmax = 12; pow[n_, k_] := IntegerPartitions[n, {k}, Range[n^(1/k) // Ceiling]^k]; col[k_] := col[k] = Reap[Module[{j = k, n = 1, p}, While[n <= nmax, p = pow[j, k]; If[p =!= {}, Sow[j]; n++]; j++]]][[2, 1]]; A[n_, k_] := col[k][[n]]; Table[A[n-k+1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 03 2020 *)