cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336725 A(n,k) is the n-th number that is a sum of k positive k-th powers; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 5, 3, 4, 10, 8, 4, 5, 19, 17, 10, 5, 6, 36, 34, 24, 13, 6, 7, 69, 67, 49, 29, 17, 7, 8, 134, 132, 98, 64, 36, 18, 8, 9, 263, 261, 195, 129, 84, 43, 20, 9, 10, 520, 518, 388, 258, 160, 99, 55, 25, 10, 11, 1033, 1031, 773, 515, 321, 247, 114, 62, 26, 11, 12, 2058, 2056, 1542, 1028, 642, 384, 278, 129, 66, 29, 12
Offset: 1

Views

Author

Alois P. Heinz, Aug 01 2020

Keywords

Examples

			Square array A(n,k) begins:
   1,  2,  3,   4,   5,   6,    7,    8,    9,   10, ...
   2,  5, 10,  19,  36,  69,  134,  263,  520, 1033, ...
   3,  8, 17,  34,  67, 132,  261,  518, 1031, 2056, ...
   4, 10, 24,  49,  98, 195,  388,  773, 1542, 3079, ...
   5, 13, 29,  64, 129, 258,  515, 1028, 2053, 4102, ...
   6, 17, 36,  84, 160, 321,  642, 1283, 2564, 5125, ...
   7, 18, 43,  99, 247, 384,  769, 1538, 3075, 6148, ...
   8, 20, 55, 114, 278, 734,  896, 1793, 3586, 7171, ...
   9, 25, 62, 129, 309, 797, 2193, 2048, 4097, 8194, ...
  10, 26, 66, 164, 340, 860, 2320, 6568, 4608, 9217, ...
		

Crossrefs

Rows n=1-3 give: A000027, A052944, A145071.
Main diagonal gives A000337.
Cf. A336820.

Programs

  • Maple
    A:= proc() local l, w, A; l, w, A:= proc() [] end, proc() [] end,
          proc(n, k) option remember; local b; b:=
            proc(x, y) option remember; `if`(x=0, {0}, `if`(y<1, {},
              {b(x, y-1)[], map(t-> t+l(k)[y], b(x-1, y))[]}))
            end;
            while nops(w(k)) < n do forget(b);
              l(k):= [l(k)[], (nops(l(k))+1)^k];
              w(k):= sort([select(h-> h
    				
  • Mathematica
    nmax = 12;
    pow[n_, k_] := IntegerPartitions[n, {k}, Range[n^(1/k) // Ceiling]^k];
    col[k_] := col[k] = Reap[Module[{j = k, n = 1, p}, While[n <= nmax, p = pow[j, k]; If[p =!= {}, Sow[j]; n++]; j++]]][[2, 1]];
    A[n_, k_] := col[k][[n]];
    Table[A[n-k+1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 03 2020 *)