cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336732 The number of tight 4 X n pavings.

Original entry on oeis.org

0, 1, 26, 282, 2072, 12279, 63858, 305464, 1382648, 6029325, 25628762, 107026662, 441439944, 1804904755, 7334032754, 29669499492, 119647095176, 481400350185, 1933747745850, 7758556171570, 31102292517560, 124605486285231, 498987240470066, 1997573938402512
Offset: 0

Views

Author

Roberto Tauraso, Aug 02 2020

Keywords

Comments

This is row (or column) m=4 of the array T in A285357.

Crossrefs

Cf. A000295 (m=2), A285357, A285361 (m=3), A336734 (m=5).

Programs

  • Maple
    seq((4^(n+5)+(n-42)*3^(n+4)-9*(2*n-27)*2^(n+5)-36*n^3-486*n^2-2577*n-5398)/36,n=0..20);
  • Mathematica
    num=(x+8*x^2-47*x^3+6*x^4+104*x^5); den=((1-x)^4*(1-2*x)^2*(1-3*x)^2*(1-4*x)); CoefficientList[Series[num/den,{x,0,20}],x]

Formula

a(n) = (4^(n+5)+(n-42)*3^(n+4)-9*(2*n-27)*2^(n+5)-36*n^3-486*n^2-2577*n-5398)/36.
G.f.: (x+8*x^2-47*x^3+6*x^4+104*x^5)/((1-x)^4*(1-2*x)^2*(1-3*x)^2*(1-4*x)).