A336765 Decimal expansion of Sum_{n>=1} 1/(n!*n^n).
1, 1, 3, 1, 3, 3, 8, 2, 9, 6, 6, 0, 0, 6, 2, 6, 3, 7, 1, 5, 0, 8, 8, 5, 2, 7, 8, 6, 9, 2, 8, 3, 4, 9, 5, 1, 3, 0, 6, 8, 1, 0, 6, 9, 5, 0, 9, 0, 2, 5, 8, 3, 9, 8, 8, 2, 1, 7, 1, 9, 5, 2, 5, 6, 0, 2, 7, 0, 9, 8, 6, 8, 8, 3, 0, 9, 2, 6, 5, 6, 8, 7, 9, 6, 0, 2, 9, 1, 8, 3, 6, 8, 6, 8, 9, 5, 5, 5, 8, 2, 5, 7, 5, 7, 7
Offset: 1
Examples
1.13133829660062637150885278692834951306810695090...
Programs
-
Maple
evalf(sum(1/(n!*n^n), n=1..infinity), 106); # Alois P. Heinz, Nov 20 2020
-
Mathematica
RealDigits[N[Sum[1/(n!*n^n), {n, 1, Infinity}], 800]]
-
PARI
suminf(n=1, 1/(n!*n^n)) \\ Michel Marcus, Aug 20 2020
Formula
Equals Sum_{n>=1} 1/A061711(n).
Extensions
Missing first digit inserted by Alois P. Heinz, Nov 20 2020