cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A336773 a(n) is the least prime of the form 2^j*3^k + 1, j > 0, k > 0, j + k = n. a(n) = 0 if no such prime exists.

Original entry on oeis.org

7, 13, 37, 73, 97, 193, 577, 769, 3457, 10369, 0, 12289, 629857, 839809, 147457, 995329, 1990657, 786433, 5308417, 120932353, 14155777, 28311553, 0, 113246209, 29386561537, 3439853569, 6879707137, 1811939329, 18345885697, 3221225473, 1253826625537, 0, 85691213438977
Offset: 2

Views

Author

Hugo Pfoertner, Aug 28 2020

Keywords

Crossrefs

Cf. A033845, A058383, A336772 (positions of 0).

Programs

  • Maple
    f:= proc(n) local k,p;
       for k from 1 to n-1 do
         p:= 2^(n-k)*3^k+1;
         if isprime(p) then return p fi
       od;
       0
    end proc:
    map(f, [$2..40]); # Robert Israel, Aug 30 2020
  • PARI
    for(n=2,34, my(pm=oo); for(j=1,n-1, my(k=n-j,p=2^j*3^k+1);if(isprime(p),pm=min(p,pm))); print1(if(pm==oo,0,pm),", "))

A337426 Sums s of positive exponents such that no prime of the form (3^j*5^k + 1)/2 with j + k = s exists.

Original entry on oeis.org

2, 16, 24, 25, 30, 40, 41, 50, 57, 61, 64, 65, 69, 71, 74, 77, 79, 80, 82, 84, 89, 95, 97, 99, 104, 105, 106, 107, 111, 112, 119, 124, 129, 132, 133, 136, 137, 139, 141, 143, 147, 153, 155, 158, 165, 166, 167, 168, 170, 176, 177, 178, 181, 193, 203, 208, 215, 216
Offset: 1

Views

Author

Hugo Pfoertner, Aug 27 2020

Keywords

Crossrefs

Positions of 0 in A337425.

Programs

  • Maple
    filter:= proc(n) local k, p;
       for k from 1+(n-1 mod 2) to n-1 by 2 do
         p:= (3^(n-k)*5^k+1)/2;
         if isprime(p) then return false fi
       od;
       true
    end proc:
    select(filter, [$2..300]); # Robert Israel, Sep 01 2020

A337424 Sums s of positive exponents such that no prime of the form (3^j*5^k - 1)/2 with j + k = s exists.

Original entry on oeis.org

12, 19, 20, 23, 26, 33, 34, 35, 40, 41, 48, 51, 52, 54, 63, 68, 69, 74, 75, 78, 83, 87, 93, 97, 101, 103, 105, 114, 116, 123, 132, 135, 138, 141, 142, 144, 147, 152, 154, 159, 165, 170, 172, 173, 179, 180, 186, 187, 189, 192, 194, 202, 203, 210, 215, 216, 217, 218, 221
Offset: 1

Views

Author

Hugo Pfoertner, Aug 27 2020

Keywords

Crossrefs

Positions of 0 in A337423.
Showing 1-3 of 3 results.