cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A336772 Sums s of positive exponents such that no prime of the form 2^j*3^k + 1 with j + k = s exists.

Original entry on oeis.org

12, 24, 33, 46, 48, 60, 72, 74, 80, 96, 102, 111, 118, 120, 130, 132, 141, 142, 144, 147, 159, 162, 165, 166, 168, 186, 200, 216, 234, 240, 242, 252, 258, 288, 306, 309, 312, 318, 358, 370, 374, 375, 384, 399, 405, 408, 414, 420, 432, 435, 462, 464, 468, 478
Offset: 1

Views

Author

Hugo Pfoertner, based on a suggestion from Rainer Rosenthal, Aug 24 2020

Keywords

Examples

			a(1) = 12, because none of the 11 numbers {2^1*3^11+1, 2^2*3^10+1, ..., 2^11*3^1+1} = {354295, 236197, 157465, 104977, 69985, 46657, 31105, 20737, 13825, 9217, 6145} is prime,
a(2) = 24: none of the 23 numbers {2^1*3^23+1, 2^2*3^22+1, ..., 2^23*3^1+1} = {188286357655, 125524238437, 83682825625, 55788550417, ..., 56623105, 37748737, 25165825} is prime.
		

Crossrefs

Programs

  • PARI
    for(s=2,500, my(t=1); for(j=1,s-1, my(k=s-j); if(isprime(2^j*3^k+1),t=0;break)); if(t,print1(s,", ")))

A337881 30*a(n) - 1 is the least prime of the form 2^r*3^s*5^t - 1, r > 0, s > 0, t > 0, r + s + t = n.

Original entry on oeis.org

1, 2, 6, 8, 16, 48, 96, 432, 384, 512, 2304, 4608, 23040, 8192, 24576, 49152, 65536, 294912, 655360, 1310720, 2621440, 10616832, 6291456, 28311552, 62914560, 75497472, 251658240, 838860800, 402653184, 805306368, 1073741824, 12079595520, 14495514624, 65229815808
Offset: 3

Views

Author

Hugo Pfoertner and Rainer Rosenthal, Oct 12 2020

Keywords

Crossrefs

A337882 30*a(n) + 1 is the least prime of the form 2^r*3^s*5^t + 1, r > 0, s > 0, t > 0, r + s + t = n.

Original entry on oeis.org

1, 2, 6, 8, 40, 72, 160, 288, 256, 512, 2560, 2048, 6144, 30720, 24576, 122880, 147456, 737280, 1638400, 1179648, 3932160, 4718592, 21233664, 12582912, 25165824, 382205952, 67108864, 679477248, 1509949440, 805306368, 13589544960, 4831838208, 9663676416, 32212254720
Offset: 3

Views

Author

Hugo Pfoertner and Rainer Rosenthal, Oct 12 2020

Keywords

Crossrefs

A337437 a(n) is the least prime of the form 2^j*3^k - 1, j > 0, k > 0, j + k = n. a(n) = 0 if no such prime exists.

Original entry on oeis.org

5, 11, 23, 47, 0, 191, 383, 1151, 0, 6911, 6143, 27647, 0, 73727, 497663, 294911, 0, 786431, 17915903, 10616831, 0, 18874367, 188286357653, 169869311, 0, 39182082047, 10319560703, 4076863487, 0, 7247757311, 32614907903, 495338913791, 0, 51539607551, 1174136684543
Offset: 2

Views

Author

Hugo Pfoertner, Aug 28 2020

Keywords

Crossrefs

Cf. A336773.

Programs

  • Maple
    f:= proc(n) local k, p;
       if n mod 4 = 2 and n > 2 then return 0 fi;
       for k from 1 to n-1 do
         p:= 2^(n-k)*3^k-1;
         if isprime(p) then return p fi
       od;
       0
    end proc:
    map(f, [$2..40]); # Robert Israel, Sep 01 2020
  • PARI
    for(n=2,36, my(pm=oo); for(j=1,n-1, my(k=n-j,p=2^j*3^k-1);if(isprime(p),pm=min(p,pm))); print1(if(pm==oo,0,pm),", "))

Formula

a(n) = 0 for n = 2 mod 4, n > 2.
Showing 1-4 of 4 results.