A336773 a(n) is the least prime of the form 2^j*3^k + 1, j > 0, k > 0, j + k = n. a(n) = 0 if no such prime exists.
7, 13, 37, 73, 97, 193, 577, 769, 3457, 10369, 0, 12289, 629857, 839809, 147457, 995329, 1990657, 786433, 5308417, 120932353, 14155777, 28311553, 0, 113246209, 29386561537, 3439853569, 6879707137, 1811939329, 18345885697, 3221225473, 1253826625537, 0, 85691213438977
Offset: 2
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 2..2193
Programs
-
Maple
f:= proc(n) local k,p; for k from 1 to n-1 do p:= 2^(n-k)*3^k+1; if isprime(p) then return p fi od; 0 end proc: map(f, [$2..40]); # Robert Israel, Aug 30 2020
-
PARI
for(n=2,34, my(pm=oo); for(j=1,n-1, my(k=n-j,p=2^j*3^k+1);if(isprime(p),pm=min(p,pm))); print1(if(pm==oo,0,pm),", "))