A336842 Number of trailing 1-bits in the binary representation of A003961(n): a(n) = A007814(1+A003961(n)).
1, 2, 1, 1, 3, 4, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 6, 3, 3, 1, 3, 1, 2, 1, 2, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 4, 3, 1, 1, 1, 2, 5, 1, 2, 3, 2, 1, 2, 1, 1, 2, 2, 4, 2, 1, 3, 2, 3, 2, 1, 3, 1, 2, 4, 2, 1, 4, 4, 8, 2, 3, 1, 1, 1, 4, 1, 1, 2, 5, 1, 1, 2, 1, 1, 5, 1, 6, 1, 2, 1, 1, 3, 1, 2, 2, 1
Offset: 1
Keywords
Links
Programs
-
PARI
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; A007814(n) = valuation(n,2); A336842(n) = A007814(1+A003961(n));
-
Python
from math import prod from sympy import factorint, nextprime def A336842(n): return (~((m:=prod(nextprime(p)**e for p, e in factorint(n).items()))+1)& m).bit_length() # Chai Wah Wu, Jul 01 2022