cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A003973 Inverse Möbius transform of A003961; a(n) = sigma(A003961(n)), where A003961 shifts the prime factorization of n one step towards the larger primes.

Original entry on oeis.org

1, 4, 6, 13, 8, 24, 12, 40, 31, 32, 14, 78, 18, 48, 48, 121, 20, 124, 24, 104, 72, 56, 30, 240, 57, 72, 156, 156, 32, 192, 38, 364, 84, 80, 96, 403, 42, 96, 108, 320, 44, 288, 48, 182, 248, 120, 54, 726, 133, 228, 120, 234, 60, 624, 112, 480, 144, 128, 62, 624, 68
Offset: 1

Views

Author

Keywords

Comments

Sum of the divisors of the prime shifted n, or equally, sum of the prime shifted divisors of n. - Antti Karttunen, Aug 17 2020

Crossrefs

Cf. A000203, A000290 (positions of odd terms), A003961, A007814, A048673, A108228, A151800, A295664, A336840.
Permutation of A008438.
Used in the definitions of the following sequences: A326042, A336838, A336841, A336844, A336846, A336847, A336848, A336849, A336850, A336851, A336852, A336856, A336931, A336932.
Cf. also A003972.

Programs

  • Mathematica
    b[1] = 1; b[p_?PrimeQ] := b[p] = Prime[ PrimePi[p] + 1]; b[n_] := b[n] = Times @@ (b[First[#]]^Last[#] &) /@ FactorInteger[n]; a[n_] := Sum[ b[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 70}]  (* Jean-François Alcover, Jul 18 2013 *)
  • PARI
    aPrime(p,e)=my(q=nextprime(p+1));(q^(e+1)-1)/(q-1)
    a(n)=my(f=factor(n));prod(i=1,#f~,aPrime(f[i,1],f[i,2])) \\ Charles R Greathouse IV, Jul 18 2013
    
  • PARI
    A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); }; \\ Antti Karttunen, Aug 06 2020
    
  • Python
    from math import prod
    from sympy import factorint, nextprime
    def A003973(n): return prod(((q:=nextprime(p))**(e+1)-1)//(q-1) for p,e in factorint(n).items()) # Chai Wah Wu, Jul 05 2022

Formula

Multiplicative with a(p^e) = (q^(e+1)-1)/(q-1) where q = nextPrime(p). - David W. Wilson, Sep 01 2001
From Antti Karttunen, Aug 06-12 2020: (Start)
a(n) = Sum_{d|n} A003961(d) = Sum_{d|A003961(n)} d.
a(n) = A000203(A003961(n)) = A000593(A003961(n)).
a(n) = 2*A336840(n) - A000005(n) = 2*Sum_{d|n} (A048673(d) - (1/2)).
a(n) = A008438(A108228(n)) = A008438(A048673(n)-1).
a(n) = A336838(n) * A336856(n).
a(n) is odd if and only if n is a square.
(End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} p^3/((p+1)*(p^2-nextprime(p))) = 3.39513795..., where nextprime is A151800. - Amiram Eldar, Dec 08 2022, May 30 2025

Extensions

More terms from David W. Wilson, Aug 29 2001
Secondary name added by Antti Karttunen, Aug 06 2020

A336848 a(n) = A003973(n) / A336846(n).

Original entry on oeis.org

1, 2, 3, 13, 4, 2, 6, 10, 31, 8, 7, 13, 9, 4, 12, 121, 10, 62, 12, 52, 18, 14, 15, 2, 19, 6, 39, 26, 16, 8, 19, 182, 21, 20, 24, 403, 21, 8, 27, 40, 22, 12, 24, 7, 124, 10, 27, 121, 133, 38, 6, 13, 30, 26, 4, 20, 36, 32, 31, 52, 34, 38, 62, 1093, 36, 14, 36, 130, 9, 16, 37, 62, 40, 14, 57, 52, 42, 18, 42, 484, 781
Offset: 1

Views

Author

Antti Karttunen, Aug 06 2020

Keywords

Comments

If there are no more 1's in this sequence after the initial one, then there are no odd terms of A001599 (Ore's Harmonic Numbers) larger than one.

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A336848(n) = { my(u=A003961(n),s=sigma(u)); (s/gcd(s, numdiv(n)*u)); };

Formula

a(n) = A003973(n) / A336846(n).

A336845 a(n) = A000005(n) * A003961(n), where A003961 is the prime shift towards larger primes, and A000005 gives the number of divisors of n, and also of A003961(n).

Original entry on oeis.org

1, 6, 10, 27, 14, 60, 22, 108, 75, 84, 26, 270, 34, 132, 140, 405, 38, 450, 46, 378, 220, 156, 58, 1080, 147, 204, 500, 594, 62, 840, 74, 1458, 260, 228, 308, 2025, 82, 276, 340, 1512, 86, 1320, 94, 702, 1050, 348, 106, 4050, 363, 882, 380, 918, 118, 3000, 364, 2376, 460, 372, 122, 3780, 134, 444, 1650, 5103, 476, 1560
Offset: 1

Views

Author

Antti Karttunen, Aug 06 2020

Keywords

Comments

Dirichlet convolution of A003961 with itself.
Sequence is not injective, as it has duplicate values, for example: a(162) = a(243) = 18750. See also comments in A336475.

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A336845(n) = (numdiv(n)*A003961(n))
    
  • PARI
    A336845(n) = { my(f = factor(n)); prod(i=1, #f~, (1+f[i,2]) * (nextprime(1+f[i, 1])^f[i,2])); };
    
  • PARI
    A336845(n) = sumdiv(n,d,A003961(d)*A003961(n/d));

Formula

Multiplicative with a(prime(i)^e) = (e+1) * prime(1+i)^e.
a(n) = A000005(n) * A003961(n).
a(n) = A038040(A003961(n)).
a(n) = A336841(n) + A003973(n).
a(n) is odd if and only if n is a square.

A336846 a(n) = gcd(sigma(A003961(n)), A000005(n)*A003961(n)).

Original entry on oeis.org

1, 2, 2, 1, 2, 12, 2, 4, 1, 4, 2, 6, 2, 12, 4, 1, 2, 2, 2, 2, 4, 4, 2, 120, 3, 12, 4, 6, 2, 24, 2, 2, 4, 4, 4, 1, 2, 12, 4, 8, 2, 24, 2, 26, 2, 12, 2, 6, 1, 6, 20, 18, 2, 24, 28, 24, 4, 4, 2, 12, 2, 4, 6, 1, 4, 24, 2, 2, 20, 24, 2, 20, 2, 12, 6, 6, 4, 24, 2, 2, 1, 4, 2, 36, 4, 12, 4, 8, 2, 4, 4, 6, 4, 12, 4, 12, 2, 2, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Aug 06 2020

Keywords

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A336846(n) = { my(u=A003961(n),s=sigma(u)); gcd(s, numdiv(n)*u); };

Formula

a(n) = gcd(A003973(n), A336845(n)) = gcd(A003973(n), A336841(n)).
a(n) = gcd(A000203(A003961(n)), A000005(n)*A003961(n)).
a(n) = A324121(A003961(n)).
Showing 1-4 of 4 results.