cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336856 Prime-shifted analog of gcd(d(n), sigma(n)): a(n) = gcd(A000005(n), A003973(n)).

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 4, 1, 4, 2, 6, 2, 4, 4, 1, 2, 2, 2, 2, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 2, 4, 4, 4, 1, 2, 4, 4, 8, 2, 8, 2, 2, 2, 4, 2, 2, 1, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 1, 4, 8, 2, 2, 4, 8, 2, 4, 2, 4, 6, 6, 4, 8, 2, 2, 1, 4, 2, 12, 4, 4, 4, 8, 2, 4, 4, 6, 4, 4, 4, 12, 2, 2, 2, 3, 2, 8, 2, 8, 8
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2020

Keywords

Crossrefs

Programs

  • PARI
    A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); };
    A336856(n) = gcd(numdiv(n), A003973(n));

Formula

a(n) = A009205(A003961(n)).
a(n) = gcd(A000005(n), A003973(n)) = gcd(A000005(n), A336841(n)).
a(n) = gcd(A000005(n), 2*A336840(n)).
a(n) = A003973(n) / A336838(n) = A000005(n) / A336839(n).
For n > 1, a(n) = A336841(n) / A336837(n).
For all primes p, and n >= 0, a(p^((2^n)-1)) = 2^n.