cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336859 Mirror image of triangular array A336858.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 9, 5, 1, 1, 31, 21, 7, 1, 1, 121, 89, 37, 9, 1, 1, 515, 393, 183, 57, 11, 1, 1, 2321, 1805, 897, 321, 81, 13, 1, 1, 10879, 8557, 4431, 1729, 511, 109, 15, 1, 1, 52465, 41585, 22149, 9161, 3001, 761, 141, 17, 1, 1, 258563, 206097, 112047, 48313, 17003, 4841, 1079, 177, 19, 1
Offset: 0

Views

Author

Petros Hadjicostas, Aug 05 2020

Keywords

Comments

This is a mirror image of A336858, which is a shifted version of J. M. Bergot's triangular array first described in A104858.

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  1,     1;
  1,     3,    1;
  1,     9,    5,    1;
  1,    31,   21,    7,    1;
  1,   121,   89,   37,    9,   1;
  1,   515,  393,  183,   57,  11,   1;
  1,  2321, 1805,  897,  321,  81,  13,  1;
  1, 10879, 8557, 4431, 1729, 511, 109, 15, 1;
  ...
		

Crossrefs

Programs

  • PARI
    A000108(n) = binomial(2*n, n)/(n+1);
    A086616(n) = sum(k=0, n, binomial(n+k+1, 2*k+1) * A000108(k));
    T(n, k) = if ((k==0) || (n==k), 1, if ((n<0) || (k<0), 0, if (k==1, A086616(n-1), if (n>k, T(n, k-1) - T(n-1, k-1) - T(n-1, k-2), 0))));
    for(n=0, 10, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Aug 08 2020

Formula

T(n,k) = A336858(n, n-k) for 0 <= k <= n.
T(n,k) = T(n, k-1) - T(n-1, k-1) - T(n-1, k-2) for 2 <= k <= n with T(n,0) = T(n,n) = 1 for n >= 0 and T(n,1) = A086616(n-1) for n >= 1.
T(2*n,n) = A333090(n).
Sum_{k=0..n} T(n,k) = A104858(n) for n >= 0.
Bivariate o.g.f.: (x*y*(1 + g(x)) + 1 - y)/((1 - x)*(1 - y + x*y + x*y^2)), where g(w) = 2/(1 - w + sqrt(1 - 6*w + w^2)) = o.g.f. of A006318 (large Schroeder numbers).
Bivariate o.g.f.: (2*x*y*q(x) + 1 - y)/((1 - x)*(1 - y + x*y + x*y^2)), where q(w) = 2/(1 + w + sqrt(1 - 6*w + w^2)) = o.g.f. of A001003 (little Schroeder numbers).