A336859 Mirror image of triangular array A336858.
1, 1, 1, 1, 3, 1, 1, 9, 5, 1, 1, 31, 21, 7, 1, 1, 121, 89, 37, 9, 1, 1, 515, 393, 183, 57, 11, 1, 1, 2321, 1805, 897, 321, 81, 13, 1, 1, 10879, 8557, 4431, 1729, 511, 109, 15, 1, 1, 52465, 41585, 22149, 9161, 3001, 761, 141, 17, 1, 1, 258563, 206097, 112047, 48313, 17003, 4841, 1079, 177, 19, 1
Offset: 0
Examples
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins: 1; 1, 1; 1, 3, 1; 1, 9, 5, 1; 1, 31, 21, 7, 1; 1, 121, 89, 37, 9, 1; 1, 515, 393, 183, 57, 11, 1; 1, 2321, 1805, 897, 321, 81, 13, 1; 1, 10879, 8557, 4431, 1729, 511, 109, 15, 1; ...
Programs
-
PARI
A000108(n) = binomial(2*n, n)/(n+1); A086616(n) = sum(k=0, n, binomial(n+k+1, 2*k+1) * A000108(k)); T(n, k) = if ((k==0) || (n==k), 1, if ((n<0) || (k<0), 0, if (k==1, A086616(n-1), if (n>k, T(n, k-1) - T(n-1, k-1) - T(n-1, k-2), 0)))); for(n=0, 10, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Aug 08 2020
Formula
T(n,k) = A336858(n, n-k) for 0 <= k <= n.
T(n,k) = T(n, k-1) - T(n-1, k-1) - T(n-1, k-2) for 2 <= k <= n with T(n,0) = T(n,n) = 1 for n >= 0 and T(n,1) = A086616(n-1) for n >= 1.
T(2*n,n) = A333090(n).
Sum_{k=0..n} T(n,k) = A104858(n) for n >= 0.
Bivariate o.g.f.: (x*y*(1 + g(x)) + 1 - y)/((1 - x)*(1 - y + x*y + x*y^2)), where g(w) = 2/(1 - w + sqrt(1 - 6*w + w^2)) = o.g.f. of A006318 (large Schroeder numbers).
Bivariate o.g.f.: (2*x*y*q(x) + 1 - y)/((1 - x)*(1 - y + x*y + x*y^2)), where q(w) = 2/(1 + w + sqrt(1 - 6*w + w^2)) = o.g.f. of A001003 (little Schroeder numbers).
Comments