A336931 Difference between the 2-adic valuation of A003973(n) [= the sum of divisors of the prime shifted n] and the 2-adic valuation of the number of divisors of n.
0, 1, 0, 0, 2, 1, 1, 1, 0, 3, 0, 0, 0, 2, 2, 0, 1, 1, 2, 2, 1, 1, 0, 1, 0, 1, 0, 1, 4, 3, 0, 1, 0, 2, 3, 0, 0, 3, 0, 3, 1, 2, 3, 0, 2, 1, 0, 0, 0, 1, 1, 0, 1, 1, 2, 2, 2, 5, 0, 2, 1, 1, 1, 0, 2, 1, 2, 1, 0, 4, 0, 1, 3, 1, 0, 2, 1, 1, 1, 2, 0, 2, 0, 1, 3, 4, 4, 1, 0, 3, 1, 0, 0, 1, 4, 1, 0, 1, 0, 0, 2, 2, 1, 1, 3
Offset: 1
Keywords
Links
Crossrefs
Programs
-
PARI
A007814(n) = valuation(n, 2); A336931(n) = { my(f=factor(n)); sum(i=1, #f~, (f[i, 2]%2) * (A007814(1+nextprime(1+f[i, 1]))-1)); };
-
PARI
A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); }; A007814(n) = valuation(n, 2); A336931(n) = (A007814(A003973(n)) - A007814(numdiv(n)));
-
Python
from math import prod from sympy import factorint, nextprime, divisor_count def A336931(n): return (~(m:=prod(((q:=nextprime(p))**(e+1)-1)//(q-1) for p,e in factorint(n).items()))& m-1).bit_length()-(~(k:=int(divisor_count(n))) & k-1).bit_length() # Chai Wah Wu, Jul 05 2022
Comments