cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336931 Difference between the 2-adic valuation of A003973(n) [= the sum of divisors of the prime shifted n] and the 2-adic valuation of the number of divisors of n.

Original entry on oeis.org

0, 1, 0, 0, 2, 1, 1, 1, 0, 3, 0, 0, 0, 2, 2, 0, 1, 1, 2, 2, 1, 1, 0, 1, 0, 1, 0, 1, 4, 3, 0, 1, 0, 2, 3, 0, 0, 3, 0, 3, 1, 2, 3, 0, 2, 1, 0, 0, 0, 1, 1, 0, 1, 1, 2, 2, 2, 5, 0, 2, 1, 1, 1, 0, 2, 1, 2, 1, 0, 4, 0, 1, 3, 1, 0, 2, 1, 1, 1, 2, 0, 2, 0, 1, 3, 4, 4, 1, 0, 3, 1, 0, 0, 1, 4, 1, 0, 1, 0, 0, 2, 2, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Aug 17 2020

Keywords

Comments

Note that A295664(n) = A295664(A003961(n)).

Crossrefs

Cf. A003961, A003973, A007814, A007913, A295664, A336930 (positions of zeros), A336932, A336937.

Programs

  • PARI
    A007814(n) = valuation(n, 2);
    A336931(n) = { my(f=factor(n)); sum(i=1, #f~, (f[i, 2]%2) * (A007814(1+nextprime(1+f[i, 1]))-1)); };
    
  • PARI
    A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); };
    A007814(n) = valuation(n, 2);
    A336931(n) = (A007814(A003973(n)) - A007814(numdiv(n)));
    
  • Python
    from math import prod
    from sympy import factorint, nextprime, divisor_count
    def A336931(n): return (~(m:=prod(((q:=nextprime(p))**(e+1)-1)//(q-1) for p,e in factorint(n).items()))& m-1).bit_length()-(~(k:=int(divisor_count(n))) & k-1).bit_length() # Chai Wah Wu, Jul 05 2022

Formula

Additive with a(p^e) = 0 when e is even, a(p^e) = A007814(1+A003961(p))-1 when e is odd.
a(n) = A336932(n) - A295664(n).
a(n) = a(A007913(n)).