cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A003973 Inverse Möbius transform of A003961; a(n) = sigma(A003961(n)), where A003961 shifts the prime factorization of n one step towards the larger primes.

Original entry on oeis.org

1, 4, 6, 13, 8, 24, 12, 40, 31, 32, 14, 78, 18, 48, 48, 121, 20, 124, 24, 104, 72, 56, 30, 240, 57, 72, 156, 156, 32, 192, 38, 364, 84, 80, 96, 403, 42, 96, 108, 320, 44, 288, 48, 182, 248, 120, 54, 726, 133, 228, 120, 234, 60, 624, 112, 480, 144, 128, 62, 624, 68
Offset: 1

Views

Author

Keywords

Comments

Sum of the divisors of the prime shifted n, or equally, sum of the prime shifted divisors of n. - Antti Karttunen, Aug 17 2020

Crossrefs

Cf. A000203, A000290 (positions of odd terms), A003961, A007814, A048673, A108228, A151800, A295664, A336840.
Permutation of A008438.
Used in the definitions of the following sequences: A326042, A336838, A336841, A336844, A336846, A336847, A336848, A336849, A336850, A336851, A336852, A336856, A336931, A336932.
Cf. also A003972.

Programs

  • Mathematica
    b[1] = 1; b[p_?PrimeQ] := b[p] = Prime[ PrimePi[p] + 1]; b[n_] := b[n] = Times @@ (b[First[#]]^Last[#] &) /@ FactorInteger[n]; a[n_] := Sum[ b[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 70}]  (* Jean-François Alcover, Jul 18 2013 *)
  • PARI
    aPrime(p,e)=my(q=nextprime(p+1));(q^(e+1)-1)/(q-1)
    a(n)=my(f=factor(n));prod(i=1,#f~,aPrime(f[i,1],f[i,2])) \\ Charles R Greathouse IV, Jul 18 2013
    
  • PARI
    A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); }; \\ Antti Karttunen, Aug 06 2020
    
  • Python
    from math import prod
    from sympy import factorint, nextprime
    def A003973(n): return prod(((q:=nextprime(p))**(e+1)-1)//(q-1) for p,e in factorint(n).items()) # Chai Wah Wu, Jul 05 2022

Formula

Multiplicative with a(p^e) = (q^(e+1)-1)/(q-1) where q = nextPrime(p). - David W. Wilson, Sep 01 2001
From Antti Karttunen, Aug 06-12 2020: (Start)
a(n) = Sum_{d|n} A003961(d) = Sum_{d|A003961(n)} d.
a(n) = A000203(A003961(n)) = A000593(A003961(n)).
a(n) = 2*A336840(n) - A000005(n) = 2*Sum_{d|n} (A048673(d) - (1/2)).
a(n) = A008438(A108228(n)) = A008438(A048673(n)-1).
a(n) = A336838(n) * A336856(n).
a(n) is odd if and only if n is a square.
(End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} p^3/((p+1)*(p^2-nextprime(p))) = 3.39513795..., where nextprime is A151800. - Amiram Eldar, Dec 08 2022, May 30 2025

Extensions

More terms from David W. Wilson, Aug 29 2001
Secondary name added by Antti Karttunen, Aug 06 2020

A336839 Denominator of the arithmetic mean of the divisors of A003961(n).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 07 2020

Keywords

Comments

Also denominator of A336841(n) / A000005(n).
All terms are odd because A336932(n) = A007814(A003973(n)) >= A295664(n) for all n.

Crossrefs

Cf. A336918 (positions of 1's), A336919 (of terms > 1).
Cf. A336837 and A336838 (numerators).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A336839(n) = denominator(sigma(A003961(n))/numdiv(n));

Formula

a(n) = denominator(A003973(n)/A000005(n)).
a(n) = d(n)/A336856(n) = d(n)/gcd(d(n),A003973(n)) = d(n)/gcd(d(n),A336841(n)), where d(n) is the number of divisors of n, A000005(n).
a(n) = A057021(A003961(n)).
For all primes p, and e >= 0, a(A000225(e)) = a(p^((2^e) - 1)) = 1. [See A336856]
It seems that for all odd primes p, and with the exponents e=5, 11, 17 or 23 (at least these), a(p^e) = 1.
It seems that a(27^((2^n)-1)) = A052940(n-1) for all n >= 1.

A336930 Numbers k such that the 2-adic valuation of A003973(k), the sum of divisors of the prime shifted k is equal to the 2-adic valuation of the number of divisors of k.

Original entry on oeis.org

1, 3, 4, 9, 11, 12, 13, 16, 23, 25, 27, 31, 33, 36, 37, 39, 44, 47, 48, 49, 52, 59, 64, 69, 71, 75, 81, 83, 89, 92, 93, 97, 99, 100, 107, 108, 109, 111, 117, 121, 124, 131, 132, 139, 141, 143, 144, 147, 148, 151, 156, 167, 169, 176, 177, 179, 188, 191, 192, 193, 196, 207, 208, 213, 225, 227, 229, 236, 239, 243, 249, 251
Offset: 1

Views

Author

Antti Karttunen, Aug 17 2020

Keywords

Comments

Numbers k for which A295664(k) is equal to A336932(k). Note that A295664(A003961(n)) = A295664(n).
Numbers k such that A003961(A007913(k)) [or equally, A007913(A003961(k))] is in A004613, i.e., has only prime divisors of the form 4k+1.
Subsequences include squares (A000290), and also primes p which when prime-shifted [as A003961(p)] become primes of the form 4k+1 (A002144), and all their powers as well as the products between these.

Crossrefs

Programs

  • PARI
    A007814(n) = valuation(n, 2);
    A336931(n) = { my(f=factor(n)); sum(i=1, #f~, (f[i, 2]%2) * (A007814(1+nextprime(1+f[i, 1]))-1)); };
    isA336930(n) = !A336931(n);
    
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA004613(n) = (1==(n%4) && 1==factorback(factor(n)[, 1]%4)); \\ After code in A004613.
    isA336930(n) = isA004613(A003961(core(n)));
    
  • Python
    from math import prod
    from itertools import count, islice
    from sympy import factorint, nextprime, divisor_count
    def A336930_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:(~(m:=prod(((q:=nextprime(p))**(e+1)-1)//(q-1) for p,e in factorint(n).items()))& m-1).bit_length()==(~(k:=int(divisor_count(n))) & k-1).bit_length(),count(max(startvalue,1)))
    A336930_list = list(islice(A336930_gen(),30)) # Chai Wah Wu, Jul 05 2022
Showing 1-3 of 3 results.