cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336983 Bogota numbers that are not Colombian numbers.

Original entry on oeis.org

4, 11, 16, 24, 25, 36, 39, 49, 56, 81, 88, 93, 96, 111, 119, 138, 144, 164, 171, 192, 224, 242, 250, 297, 336, 339, 366, 393, 408, 422, 448, 456, 488, 497, 516, 520, 522, 564, 575, 696, 704, 744, 755, 777, 792, 795, 819, 848, 884, 900, 912, 933, 944, 966, 992
Offset: 1

Views

Author

Bernard Schott, Aug 10 2020

Keywords

Comments

Equivalently, numbers m that are of the form k + sum of digits of k for some k (A176995), and also of the form q * product of digits of q for some q (A336826).
Repunits are trivially Bogota numbers but the indices m of the repunits R_m that are not Colombian numbers are in A337139; also, all known repunit primes are terms (A004023) [see examples for primes R_2, R_19 and R_23].
35424 is the smallest term that belongs to both A230094 and A336944 (see last example).

Examples

			R_2 = 11 = 10 + (1+0) = 11 * (1*1) is a term;
24 = 21 + (2+1) = 12 * (1*2) is a term;
39 = 33 + (3+3) = 13 * (1*3) is a term;
R_19 = 1111111111111111079 + (16*1+7+9) = 1111111111111111111 * (1^19) hence R_19 is a term;
R_23 = 11111111111111111111077 + (20*1+7+7) = 11111111111111111111111 * (1^23) hence R_23 is a term;
42 = 21 * (2*1) is a Bogota number but there does not exist m < 42 such that 42 = m + sum of digits of m, hence 42 that is also a Colombian number is not a term.
35424 = 35406 + (3+5+4+0+6) = 35397 + (3+5+3+9+7) = 2214 * (2*2*1*4) = 492 * (4*9*2).
		

Crossrefs

Intersection of A176995 and A336826.
Cf. A003052 (Colombian), A336984 (Bogota and Colombian), A336985 (Colombian not Bogota), A336986 (not Colombian and not Bogota).

Programs

  • Mathematica
    m = 1000; Intersection[Select[Union[Table[n + Plus @@ IntegerDigits[n], {n, 1, m}]], # <= m &], Select[Union[Table[n * Times @@ IntegerDigits[n], {n, 1, m}]], # <= m &]] (* Amiram Eldar, Aug 10 2020 *)
  • PARI
    lista(nn) = Vec(setintersect(Set(vector(nn, k, k+sumdigits(k))), Set(vector(nn, k, k*vecprod(digits(k)))))); \\ Michel Marcus, Aug 20 2020