cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A336984 Colombian numbers that are also Bogotá numbers.

Original entry on oeis.org

1, 9, 42, 64, 75, 255, 312, 378, 525, 648, 738, 1111, 1278, 2224, 2448, 2784, 2817, 3504, 3864, 3875, 4977, 5238, 5495, 5888, 8992, 9712, 10368, 11358, 11817, 12348, 12875, 13136, 13584, 13775, 13832, 13944, 15351, 15384, 15744, 15900, 16912, 17768, 18095, 19344, 20448
Offset: 1

Views

Author

Bernard Schott, Aug 22 2020

Keywords

Comments

Equivalently, numbers m that are not of the form k + sum of digits of k for any k (A003052), but are of the form q * product of digits of q for some q (A336826).
Repunits are trivially Bogotá numbers but the indices m of the repunits R_m that are Colombian numbers are in A337208. No known prime belongs to this sequence (see A004023).
A336983, A336985, A336986 and this sequence form a partition of the set of positive integers N*.

Examples

			42 = 21 * (2*1) is a Bogotá number and there does not exist m < 42 such that 42 = m + sum of digits of m, hence 42 is a Colombian number and 42 is a term.
56 = 14 * (1*4) is a Bogotá number but as 56 = 46 + (4+6), 56 is not a Colombian number, hence 56 is not a term.
648 = 36 * (3*6) = 81 * (8*1) but there does not exist m < 648 such that 648 = m + sum of digits of m, hence 648 is a Colombian number, so 648 is a term that has two different representations as the product of a number and of its decimal digits.
		

Crossrefs

Intersection of A003052 and A336826.
Cf. A336983 (Bogotá and not Colombian), A336985 (Colombian not Bogotá), A336986 (not Colombian and not Bogotá).

Programs

  • Mathematica
    m = 21000; Intersection[Complement[Range[m], Select[Union[Table[n + Plus @@ IntegerDigits[n], {n, 1, m}]], # <= m &]], Select[Union[Table[n * Times @@ IntegerDigits[n], {n, 1, m}]], # <= m &]] (* Amiram Eldar, Aug 22 2020 *)
  • PARI
    lista(nn) = Vec(setintersect(setminus([1..nn], Set(vector(nn, k, k+sumdigits(k)))), Set(vector(nn, k, k*vecprod(digits(k)))))); \\ Michel Marcus, Aug 23 2020

A336985 Colombian numbers that are not Bogotá numbers.

Original entry on oeis.org

3, 5, 7, 20, 31, 53, 86, 97, 108, 110, 121, 132, 143, 154, 165, 176, 187, 198, 209, 211, 222, 233, 244, 266, 277, 288, 299, 310, 323, 334, 345, 356, 367, 389, 400, 411, 413, 424, 435, 446, 457, 468, 479, 490, 501, 512, 514, 536, 547, 558, 569, 580, 591, 602, 613
Offset: 1

Views

Author

Bernard Schott, Aug 26 2020

Keywords

Comments

Equivalently, numbers m that are not of the form k + sum of digits of k for any k (A003052), and that are not of the form q * product of digits of q for any q (complement of A336826).
As repunits are trivially Bogotá numbers, there are not repunits in the data.
A336983, A336984, A336986 and this sequence form a partition of the set of positive integers N*

Examples

			7 is a term because there are not k < 7  such that 7 = k + sum of digits of k, and that are not q such that 7 = q * product of digits of q.
13 is not of the form q * product of digits of q for any q <= 13, so 13 is not a Bogotá number, but 13 = 11 + (1+1) is not Colombian, hence 13 is not a term.
42 is Colombian because there does not exist m < 42 such that 42 = m + sum of digits of m, but as 42 = 21 * (2*1) is a Bogota number, 42 is not a term.
		

Crossrefs

Cf. A003052 (Colombian), A176995 (not Colombian), A336826 (Bogotá numbers), A336983 (Bogotá not Colombian), A336984 (Bogotá and Colombian), this sequence (Colombian not Bogotá), A336986 (not Colombian and not Bogotá).

Programs

  • Mathematica
    m = 600; Intersection[Complement[Range[m], Select[Union[Table[n + Plus @@ IntegerDigits[n], {n, 1, m}]], # <= m &]], Complement[Range[m], Select[Union[Table[n * Times @@ IntegerDigits[n], {n, 1, m}]], # <= m &]]] (* Amiram Eldar, Aug 26 2020 *)
  • PARI
    lista(nn) = Vec(setintersect(setminus([1..nn], Set(vector(nn, k, k+sumdigits(k)))), setminus([1..nn], Set(vector(nn, k, k*vecprod(digits(k))))))); \\ Michel Marcus, Aug 26 2020

A336986 Numbers that are not Colombian and not Bogotá.

Original entry on oeis.org

2, 6, 8, 10, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 26, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 40, 41, 43, 44, 45, 46, 47, 48, 50, 51, 52, 54, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 85, 87, 89, 90, 91
Offset: 1

Views

Author

Bernard Schott, Aug 22 2020

Keywords

Comments

Equivalently, numbers m that are of the form k + sum of digits of k for some k (A176995), but are not of the form q * product of digits of q for any q.
As repunits are trivially Bogotá numbers, there are not repunits in the data.
A336983, A336984, A336985 and this sequence form a partition of the set of positive integers N*.

Examples

			13 = 11 + (1+1) is not Colombian and 13 is not of the form q * product of digits of q for any q <= 13, so 13 is not a Bogotá number, hence 13 is a term.
39 = 33 + (3+3) is not Colombian but 39 = 13 * (1*3) is a Bogotá number, hence 39 is not a term.
42 = 21 * (2*1) is a Bogotá number but there does not exist k < 42 such that 42 = k + sum of digits of k, hence 42 is a Colombian number and 42 is not a term.
		

Crossrefs

Cf. A003052 (Colombian), A176995 (not Colombian), A336826 (Bogotá), A336983 (Bogotá and not Colombian), A336984 (Bogotá and Colombian), A336985 (Colombian not Bogotá), this sequence (not Colombian and not Bogotá).

Programs

  • Mathematica
    m = 100; Intersection[Select[Union[Table[n + Plus @@ IntegerDigits[n], {n, 1, m}]], # <= m &], Complement[Range[m], Select[Union[Table[n * Times @@ IntegerDigits[n], {n, 1, m}]], # <= m &]]] (* Amiram Eldar, Aug 22 2020 *)
  • PARI
    lista(nn) = Vec(setintersect(Set(vector(nn, k, k+sumdigits(k))), setminus([1..nn], Set(vector(nn, k, k*vecprod(digits(k))))))); \\ Michel Marcus, Aug 23 2020

A337733 Numbers that can be written as (k + sum of digits of k) for some k, also as (m + product of digits of m) for some m, and finally as (q * product of digits of q) for some q.

Original entry on oeis.org

4, 16, 24, 56, 81, 88, 138, 144, 192, 242, 250, 297, 366, 408, 456, 516, 520, 522, 564, 575, 704, 744, 777, 795, 819, 884, 900, 912, 966, 1008, 1053, 1071, 1080, 1104, 1134, 1250, 1312, 1316, 1375, 1512, 1520, 1608, 1644, 1680, 1712, 1778, 1928, 1950, 2025, 2048, 2072
Offset: 1

Views

Author

Bernard Schott, Sep 18 2020

Keywords

Comments

Equivalently, Bogotá numbers that are not Colombian and that can be written as (m + product of digits of m) for some m.
The only primes that can belong to this sequence are repunits > 11 whose indices are in A004023. It is known that these primes belong to A336983, but do they belong also to A337718?

Examples

			4 = 2 + 2 = 2 + 2 = 2 * 2;
16 = 8 + 8 = 8 + 8 = 4 * 4;
24 = 21 + (2+1) = 17 + (1*7) = 12 * (1*2);
56 = 46 + (4+6) = 51 + (5*1) = 14 * (1*4);
81 = 72 + (7+2) = 63 + (6*3) = 9 * 9.
		

Crossrefs

Intersection of A176995, A336826 and A337718.
Intersection of A336983 and A337718.

Programs

  • Mathematica
    m = 2100; Select[Intersection @@ Union /@ Transpose[Table[{n + Plus @@ (d = IntegerDigits[n]), n + (p = Times @@ d), n*p}, {n, 1, m}]], # <= m &] (* Amiram Eldar, Sep 18 2020 *)
  • PARI
    isok(m) = {if (m==0, return (1)); for (k=1, m,  if (k+vecprod(digits(k)) == m, return (1)); ); } \\ A337718
    listb(nn) = Vec(setintersect(Set(vector(nn, k, k+sumdigits(k))), Set(vector(nn, k, k*vecprod(digits(k)))))); \\ A336983
    lista(nn) = select(x->isok(x), listb(nn)); \\ Michel Marcus, Sep 18 2020

Extensions

More terms from Michel Marcus, Sep 18 2020

A337839 Numbers that can be written as (k + sum of digits of k) for some k, then as (m + product of digits of m) for some m, also as (q * product of digits of q) for some q, and finally as (t * sum of digits of t) for some t.

Original entry on oeis.org

4, 16, 81, 88, 144, 250, 520, 900, 1008, 1053, 1134, 2025, 2304, 2655, 3726, 4680, 6408, 6624, 9928, 12024, 12150, 12510, 13608, 14256, 15480, 16408, 17128, 17172, 18304, 19152, 19288, 19602, 23310, 24336, 25110, 26550, 29358, 32896, 32968, 36864, 37485, 38592
Offset: 1

Views

Author

Bernard Schott, Sep 25 2020

Keywords

Comments

Equivalently, Bogotá numbers that are not Colombian and that can be written as (m + product of digits of m) for some m and also as (t * sum of digits of t) for some t.
The only primes that can belong to this sequence are repunits > 11 whose indices are in A004023. It is known that these primes belong to A336983 but do they belong also to A337718 and A337816?
Observation: 7 of the first 13 terms are perfect squares: 4, 16, 81, 144, 900, 2025, 2304 (see examples).

Examples

			4 = 2 + 2 = 2 + 2 = 2 * 2 = 2 * 2;
16 = 8 + 8 = 8 + 8 = 4 * 4 = 4 * 4;
81 = 72 + (7+2) = 63 + (6*3) = 9 * 9 = 9 * 9;
144 = 135 + (1+3+5) = 128 + (1*2*8) = 18 * (1*8) = 24 * (2+4).
		

Crossrefs

Intersection of A176995, A336826, A337718 and A337816.
Intersection of A336983, A337718 and A337816.
Intersection of A337733 and A337816.

Programs

  • Mathematica
    m = 40000; Select[Intersection @@ Union /@ Transpose[Table[{n + (s = Plus @@ (d = IntegerDigits[n])), n + (p = Times @@ d), n*s, n*p}, {n, 1, m}]], # <= m &] (* Amiram Eldar, Sep 25 2020 *)
  • PARI
    lista(nn) = {my(vd = vector(nn, k, digits(k)), vs = vector(nn, k, vecsum(vd[k])), vp = vector(nn, k, vecprod(vd[k])), vsp = Set(vector(nn, k, k+vp[k])), vss = Set(vector(nn, k, k+vs[k])), vps = Set(vector(nn, k, k*vs[k])), vpp = Set(vector(nn, k, k*vp[k])), vk = vector(nn, k, k)); Vec(setintersect(vk, setintersect(vsp, setintersect(vss, setintersect(vps, vpp)))));} \\ Michel Marcus, Oct 01 2020

Extensions

Terms a(7) and beyond from Amiram Eldar, Sep 25 2020
Showing 1-5 of 5 results.