A336983 Bogota numbers that are not Colombian numbers.
4, 11, 16, 24, 25, 36, 39, 49, 56, 81, 88, 93, 96, 111, 119, 138, 144, 164, 171, 192, 224, 242, 250, 297, 336, 339, 366, 393, 408, 422, 448, 456, 488, 497, 516, 520, 522, 564, 575, 696, 704, 744, 755, 777, 792, 795, 819, 848, 884, 900, 912, 933, 944, 966, 992
Offset: 1
Examples
R_2 = 11 = 10 + (1+0) = 11 * (1*1) is a term; 24 = 21 + (2+1) = 12 * (1*2) is a term; 39 = 33 + (3+3) = 13 * (1*3) is a term; R_19 = 1111111111111111079 + (16*1+7+9) = 1111111111111111111 * (1^19) hence R_19 is a term; R_23 = 11111111111111111111077 + (20*1+7+7) = 11111111111111111111111 * (1^23) hence R_23 is a term; 42 = 21 * (2*1) is a Bogota number but there does not exist m < 42 such that 42 = m + sum of digits of m, hence 42 that is also a Colombian number is not a term. 35424 = 35406 + (3+5+4+0+6) = 35397 + (3+5+3+9+7) = 2214 * (2*2*1*4) = 492 * (4*9*2).
Links
- Giovanni Resta, Self or Colombian number, Numbers Aplenty.
- Puzzling Stackexchange, Pairs of Bogotá Numbers.
- Index to sequences related to Colombian numbers.
Crossrefs
Programs
-
Mathematica
m = 1000; Intersection[Select[Union[Table[n + Plus @@ IntegerDigits[n], {n, 1, m}]], # <= m &], Select[Union[Table[n * Times @@ IntegerDigits[n], {n, 1, m}]], # <= m &]] (* Amiram Eldar, Aug 10 2020 *)
-
PARI
lista(nn) = Vec(setintersect(Set(vector(nn, k, k+sumdigits(k))), Set(vector(nn, k, k*vecprod(digits(k)))))); \\ Michel Marcus, Aug 20 2020
Comments