A374848 Obverse convolution A000045**A000045; see Comments.
0, 1, 2, 16, 162, 3600, 147456, 12320100, 2058386904, 701841817600, 488286500625000, 696425232679321600, 2038348954317776486400, 12259459134020160144810000, 151596002479762016373851690400, 3855806813438155578522841251840000
Offset: 0
Keywords
Examples
a(0) = 0 + 0 = 0 a(1) = (0+1) * (1+0) = 1 a(2) = (0+1) * (1+1) * (1+0) = 2 a(3) = (0+2) * (1+1) * (1+1) * (2+0) = 16 As noted above, a(2*k+1) is a square for k>=0. The first 5 squares are 1, 16, 3600, 12320100, 701841817600, with corresponding square roots 1, 4, 60, 3510, 837760. If n = 2*k, then s**s(n) has the form 2*F(k)*m^2, where m is an integer and F(k) is the k-th Fibonacci number; e.g., a(6) = 2*F(3)*(192)^2.
Programs
-
Maple
a:= n-> (F-> mul(F(n-j)+F(j), j=0..n))(combinat[fibonacci]): seq(a(n), n=0..15); # Alois P. Heinz, Aug 02 2024
-
Mathematica
s[n_] := Fibonacci[n]; t[n_] := Fibonacci[n]; u[n_] := Product[s[k] + t[n - k], {k, 0, n}]; Table[u[n], {n, 0, 20}]
-
PARI
a(n)=prod(k=0, n, fibonacci(k) + fibonacci(n-k)) \\ Andrew Howroyd, Jul 31 2024
Formula
a(n) ~ c * phi^(3*n^2/4 + n) / 5^((n+1)/2), where c = QPochhammer(-1, 1/phi^2)^2/2 if n is even and c = phi^(1/4) * QPochhammer(-phi, 1/phi^2)^2 / (phi + 1)^2 if n is odd, and phi = A001622 is the golden ratio. - Vaclav Kotesovec, Aug 01 2024
Comments