A337009 Triangle of the Multiset Transform of the Fibonacci Sequence.
1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 5, 3, 1, 1, 8, 11, 6, 3, 1, 1, 13, 19, 13, 6, 3, 1, 1, 21, 37, 25, 14, 6, 3, 1, 1, 34, 65, 52, 27, 14, 6, 3, 1, 1, 55, 120, 98, 58, 28, 14, 6, 3, 1, 1, 89, 210, 191, 113, 60, 28, 14, 6, 3, 1, 1, 144, 376, 360, 229, 119, 61, 28, 14, 6, 3, 1, 1, 233, 654, 678, 443, 244, 121, 61, 28, 14, 6, 3, 1, 1
Offset: 1
Examples
The triangle starts with rows n>=1 and columns k>=1: 1 1 1 2 1 1 3 3 1 1 5 5 3 1 1 8 11 6 3 1 1 13 19 13 6 3 1 1 21 37 25 14 6 3 1 1 34 65 52 27 14 6 3 1 1 55 120 98 58 28 14 6 3 1 1 89 210 191 113 60 28 14 6 3 1 1 144 376 360 229 119 61 28 14 6 3 1 1 233 654 678 443 244 121 61 28 14 6 3 1 1 377 1149 1255 866 481 250 122 61 28 14 6 3 1 1 ...
Links
Crossrefs
Programs
-
Maple
F:= proc(n) option remember; (<<1|1>, <1|0>>^n)[1, 2] end: b:= proc(n, i) option remember; expand(`if`(n=0 or i=1, x^n, add(binomial(F(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i))) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)): seq(T(n), n=1..12); # Alois P. Heinz, Oct 29 2021
-
Mathematica
nn = 13; Rest@CoefficientList[#, y]& /@ (Series[Product[1/(1 - y x^i)^Fibonacci[i], {i, 1, nn}], {x, 0, nn}] // Rest@CoefficientList[#, x]&) // Flatten (* Jean-François Alcover, Oct 29 2021 *)
Formula
G.f.: Product_{j>=1} 1/(1-y*x^j)^Fibonacci(j). - Jean-François Alcover, Oct 29 2021
Sum_{k=0..n} (-1)^k * T(n,k) = A357475(n). - Alois P. Heinz, Apr 30 2023
Comments