A337037 Numbers whose every unordered factorization has a distinct sum of factors.
1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98, 99, 101
Offset: 1
Examples
All unordered factorization of 30 are 30 = 2*15 = 3*10 = 5*6 = 2*3*5. Corresponding sums of factors are distinct: 30, 17 = 15+2, 13 = 10+3, 11 = 6+5, 10 = 2+3+5. Therefore 30 is in the sequence. All unordered factorization of 90 are 90 = 45*2 = 30*3 = 18*5 = 15*6 = 15*3*2 = 10*9 = 9*5*2 = 10*3*3 = 6*5*3 = 5*3*3*2. Corresponding sums of factors are not all distinct: 90, 57, 33, 23, 21, 20, 19, 16, 16, 14, 13 because the sum 16 = 10+3+3 = 9+5+2 appears twice. Therefore 90 is not in the sequence.
Links
- Eric Weisstein's World of Mathematics, Unordered Factorization.
Crossrefs
Programs
-
PARI
factz(n, minn) = {my(v=[]); fordiv(n, d, if ((d>=minn) && (d<=sqrtint(n)), w = factz(n/d, d); for (i=1, #w, w[i] = concat([d], w[i]);); v = concat(v, w););); concat(v, [[n]]);} factorz(n) = factz(n, 2); isok(n) = my(vs = apply(x->vecsum(x), factorz(n))); #vs == #Set(vs); \\ Michel Marcus, Aug 13 2020
Comments