cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337050 Numbers without an exponent 2 in their prime factorization.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 48, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87
Offset: 1

Views

Author

Amiram Eldar, Aug 12 2020

Keywords

Comments

Numbers k such that the powerful part (A057521) of k is a cubefull number (A036966).
Numbers k such that A003557(k) = k/A007947(k) is a powerful number (A001694).
The asymptotic density of this sequence is Product_{primes p} (1 - 1/p^2 + 1/p^3) = 0.748535... (A330596).
A304364 is apparently a subsequence.
These numbers were named semi-2-free integers by Suryanarayana (1971). - Amiram Eldar, Dec 29 2020

Examples

			6 = 2^1 * 3^1 is a term since none of the exponents in its prime factorization is equal to 2.
9 = 3^2 is not a term since it has an exponent 2 in its prime factorization.
		

Crossrefs

Complement of A038109.
A005117, A036537, A036966, A048109, A175496, A268335 and A336590 are subsequences.
Numbers without an exponent k in their prime factorization: A001694 (k=1), this sequence (k=2), A386799 (k=3), A386803 (k=4), A386807 (k=5).
Numbers that have exactly m exponents in their prime factorization that are equal to 2: this sequence (m=0), A386796 (m=1), A386797 (m=2), A386798 (m=3).

Programs

  • Maple
    q:= n-> andmap(i-> i[2]<>2, ifactors(n)[2]):
    select(q, [$1..100])[];  # Alois P. Heinz, Aug 12 2020
  • Mathematica
    Select[Range[100], !MemberQ[FactorInteger[#][[;;, 2]], 2] &]
  • PARI
    is(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 2] == 2, return(0))); 1; } \\ Amiram Eldar, Oct 21 2023

Formula

Sum_{n>=1} 1/a(n)^s = zeta(s) * Product_{p prime} (1 - 1/p^(2*s) + 1/p^(3*s)), for s > 1. - Amiram Eldar, Oct 21 2023