cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337083 Number of spanning trees of the 1-skeleton of the (n-1)-dimensional permutohedron.

Original entry on oeis.org

1, 1, 6, 101154816, 6187732257761496793412385090375984958331031826464768000000000
Offset: 1

Views

Author

Richard Stanley, Aug 14 2020

Keywords

Comments

We have the factorizations:
a(4) = 2^15 * 3^2 * 7^3.
a(5) = 2^59 * 3^15 * 5^9 * 7^5 * 11^6 * 23^5 * 29^4 * 41^4.
a(6) = 2^215 * 3^178 * 5^47 * 7^15 * 11^39 * 13^10 * 19^16 * 23^15 * 29^16 * 41^16 * 61^5 * 67^9 * 71^5 * 1931^16 * 3253^9.

Examples

			For n=3 the permutohedron is a hexagon, which has six spanning trees.
		

Crossrefs

Cf. A006237.

Programs

  • Python
    import sympy,itertools
    def A337083(n):
      p=tuple(itertools.permutations(range(n)))
      m=len(p)
      q={p[i]:i for i in range(m)}
      Q=sympy.diag(*[n-1]*m)
      for i in range(m):
        for k in range(n-1):
          Q[i,q[p[i][:k]+tuple(reversed(p[i][k:k+2]))+p[i][k+2:]]]=-1
      return Q[:m-1,:m-1].det() # Pontus von Brömssen, Jan 18 2021

Extensions

a(1) prepended by Pontus von Brömssen, Jan 19 2021