A337083 Number of spanning trees of the 1-skeleton of the (n-1)-dimensional permutohedron.
1, 1, 6, 101154816, 6187732257761496793412385090375984958331031826464768000000000
Offset: 1
Keywords
Examples
For n=3 the permutohedron is a hexagon, which has six spanning trees.
Links
- Richard Stanley, Table of n, a(n) for n = 1..6
- Eric Weisstein's World of Mathematics, Bruhat Graph
- Wikipedia, Permutohedron
Crossrefs
Cf. A006237.
Programs
-
Python
import sympy,itertools def A337083(n): p=tuple(itertools.permutations(range(n))) m=len(p) q={p[i]:i for i in range(m)} Q=sympy.diag(*[n-1]*m) for i in range(m): for k in range(n-1): Q[i,q[p[i][:k]+tuple(reversed(p[i][k:k+2]))+p[i][k+2:]]]=-1 return Q[:m-1,:m-1].det() # Pontus von Brömssen, Jan 18 2021
Extensions
a(1) prepended by Pontus von Brömssen, Jan 19 2021
Comments