A337084 a(n) is the smallest nonzero digit d whose product d*n will contain the digit d, or 0 if no such digit exists.
1, 0, 5, 0, 5, 2, 5, 0, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 9, 5, 0, 5, 2, 5, 6, 5, 5, 1, 0, 5, 0, 4, 2, 4, 0, 5, 0, 1, 0, 5, 3, 3, 2, 5, 8, 5, 5, 1, 0, 5, 7, 5, 2, 5, 0, 5, 2, 1, 2, 2, 2, 5, 2, 5, 7, 5, 5, 1, 0, 5, 0, 5, 2, 3, 3, 3, 0, 1, 7
Offset: 1
Examples
a(22) = 9 because none of 22*1 to 22*8 contain the digit that we multiplied 22 by to get the product, but 22*9 = 198 which contains the digit 9.
Programs
-
Mathematica
a[n_] := Module[{d = 1}, While[d < 10 && ! MemberQ[IntegerDigits[n*d], d], d++]; If[d < 10, d, 0]]; Array[a, 100] (* Amiram Eldar, Aug 15 2020 *)
-
PARI
a(n) = {for (d=1, 9, if (#select(x->(x==d), digits(n*d)), return (d));); return (0);} \\ Michel Marcus, Sep 13 2020
Comments