A337119 Primes p such that b^(p-1) == 1 (mod p-1) for all b coprime to p-1.
2, 3, 5, 7, 13, 17, 19, 37, 41, 43, 61, 73, 97, 101, 109, 127, 157, 163, 181, 193, 241, 257, 313, 337, 379, 401, 421, 433, 487, 541, 577, 601, 641, 661, 673, 757, 769, 881, 883, 937, 1009, 1093, 1153, 1201, 1249, 1297, 1321, 1361, 1459, 1601, 1621, 1801, 1861, 1873, 2017, 2029, 2053, 2161, 2269, 2341, 2437, 2521, 2593
Offset: 1
Keywords
Examples
7 is in the sequence because it is prime, 1 and 5 are the integers (mod 6) coprime to 6; 1^6 mod 6 = 1; and 5^6 mod 6 = 1. 11 is not in the sequence because 3 is coprime to 10; and 3^10 mod 10 = 9 <> 1.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..300 from Harvey P. Dale)
Crossrefs
Cf. A124240.
Programs
-
Mathematica
a={}; For[p=2,p<2600, p=NextPrime[p],b=p-1; While[--b>0&&(GCD[b,p-1]!=1||PowerMod[b,p-1,p-1]==1)];If[b==0,AppendTo[a,p]]];a bcpQ[n_]:=Module[{b=Select[Range[n-2],CoprimeQ[n-1,#]&]},AllTrue[ b,PowerMod[ #,n-1,n-1]==1&]]; Select[Prime[Range[400]],bcpQ] (* Harvey P. Dale, Jan 01 2022 *)
-
Python
from math import gcd from sympy import isprime def ok(n): if not isprime(n): return False return all(pow(b, n-1, n-1) == 1 for b in range(2, n) if gcd(b, n-1)==1) print([k for k in range(2594) if ok(k)]) # Michael S. Branicky, Apr 02 2022
Comments