cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337119 Primes p such that b^(p-1) == 1 (mod p-1) for all b coprime to p-1.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 19, 37, 41, 43, 61, 73, 97, 101, 109, 127, 157, 163, 181, 193, 241, 257, 313, 337, 379, 401, 421, 433, 487, 541, 577, 601, 641, 661, 673, 757, 769, 881, 883, 937, 1009, 1093, 1153, 1201, 1249, 1297, 1321, 1361, 1459, 1601, 1621, 1801, 1861, 1873, 2017, 2029, 2053, 2161, 2269, 2341, 2437, 2521, 2593
Offset: 1

Views

Author

Francois R. Grieu, Aug 17 2020

Keywords

Comments

Equivalently: primes p to p-1 a Novák-Carmichael number A124240.
These p are such that for all x in [0,p), and all b coprime to p-1, x^(b^(p-1)) == x (mod p), this follows from the FLT.
Equivalently, primes p such that for all primes q | p-1, q-1 | p-1. Primes such that p-1 is in A124240. No prime of the form 12k+11 is in this sequence. - Paul Vanderveen, Apr 02 2022
Primes p such that B^(b^(p-1)-1) == 1 (mod p^2) for every B coprime to p and for every b coprime to (p-1)*p. - Thomas Ordowski, Sep 01 2024

Examples

			7 is in the sequence because it is prime, 1 and 5 are the integers (mod 6) coprime to 6; 1^6 mod 6 = 1; and 5^6 mod 6 = 1.
11 is not in the sequence because 3 is coprime to 10; and 3^10 mod 10 = 9 <> 1.
		

Crossrefs

Cf. A124240.

Programs

  • Mathematica
    a={}; For[p=2,p<2600, p=NextPrime[p],b=p-1; While[--b>0&&(GCD[b,p-1]!=1||PowerMod[b,p-1,p-1]==1)];If[b==0,AppendTo[a,p]]];a
    bcpQ[n_]:=Module[{b=Select[Range[n-2],CoprimeQ[n-1,#]&]},AllTrue[ b,PowerMod[ #,n-1,n-1]==1&]]; Select[Prime[Range[400]],bcpQ] (* Harvey P. Dale, Jan 01 2022 *)
  • Python
    from math import gcd
    from sympy import isprime
    def ok(n):
        if not isprime(n): return False
        return all(pow(b, n-1, n-1) == 1 for b in range(2, n) if gcd(b, n-1)==1)
    print([k for k in range(2594) if ok(k)]) # Michael S. Branicky, Apr 02 2022