cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A337152 a(n) = 2^n * (n!)^2 * Sum_{k=0..n} 1 / ((-2)^k * (k!)^2).

Original entry on oeis.org

1, 1, 9, 161, 5153, 257649, 18550729, 1817971441, 232700344449, 37697455800737, 7539491160147401, 1824556860755671041, 525472375897633259809, 177609663053400041815441, 69622987916932816391652873, 31330344562619767376243792849, 16041136416061320896636821938689
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^n n!^2 Sum[1/((-2)^k k!^2), {k, 0, n}], {n, 0, 16}]
    nmax = 16; CoefficientList[Series[BesselJ[0, 2 Sqrt[x]]/(1 - 2 x), {x, 0, nmax}], x] Range[0, nmax]!^2
  • PARI
    a(n) = 2^n * (n!)^2 * sum(k=0, n, 1 / ((-2)^k * (k!)^2)); \\ Michel Marcus, Jan 28 2021

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = BesselJ(0,2*sqrt(x)) / (1 - 2*x).
a(0) = 1; a(n) = 2 * n^2 * a(n-1) + (-1)^n.

A337153 a(n) = 3^n * (n!)^2 * Sum_{k=0..n} 1 / ((-3)^k * (k!)^2).

Original entry on oeis.org

1, 2, 25, 674, 32353, 2426474, 262059193, 38522701370, 7396358663041, 1797315155118962, 539194546535688601, 195727620392454962162, 84554332009540543653985, 42869046328837055632570394, 25206999241356188711951391673, 17014724487915427380567189379274, 13067308406719048228275601443282433
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[3^n n!^2 Sum[1/((-3)^k k!^2), {k, 0, n}], {n, 0, 16}]
    nmax = 16; CoefficientList[Series[BesselJ[0, 2 Sqrt[x]]/(1 - 3 x), {x, 0, nmax}], x] Range[0, nmax]!^2
  • PARI
    a(n) = 3^n * (n!)^2 * sum(k=0, n, 1 / ((-3)^k * (k!)^2)); \\ Michel Marcus, Jan 28 2021

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = BesselJ(0,2*sqrt(x)) / (1 - 3*x).
a(0) = 1; a(n) = 3 * n^2 * a(n-1) + (-1)^n.

A337154 a(n) = 4^n * (n!)^2 * Sum_{k=0..n} 1 / ((-4)^k * (k!)^2).

Original entry on oeis.org

1, 3, 49, 1763, 112833, 11283299, 1624795057, 318459831171, 81525716779777, 26414332236647747, 10565732894659098801, 5113814721015003819683, 2945557279304642200137409, 1991196720809938127292888483, 1561098229114991491797624570673, 1404988406203492342617862113605699
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[4^n n!^2 Sum[1/((-4)^k k!^2), {k, 0, n}], {n, 0, 15}]
    nmax = 15; CoefficientList[Series[BesselJ[0, 2 Sqrt[x]]/(1 - 4 x), {x, 0, nmax}], x] Range[0, nmax]!^2
  • PARI
    a(n) = 4^n * (n!)^2 * sum(k=0, n, 1 / ((-4)^k * (k!)^2)); \\ Michel Marcus, Jan 28 2021

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = BesselJ(0,2*sqrt(x)) / (1 - 4*x).
a(0) = 1; a(n) = 4 * n^2 * a(n-1) + (-1)^n.
Showing 1-3 of 3 results.