A337156 Numbers k such that the k-th triangular number has all its prime factors congruent to 1 mod 4.
1, 25, 73, 145, 169, 193, 289, 313, 337, 409, 457, 481, 577, 625, 673, 697, 745, 793, 841, 865, 985, 1009, 1129, 1153, 1201, 1249, 1321, 1345, 1369, 1417, 1465, 1489, 1513, 1537, 1585, 1657, 1681, 1753, 1801, 1873, 1993, 2017, 2041, 2137, 2257, 2305, 2329, 2377, 2425, 2473
Offset: 1
Keywords
Examples
a(2) = 25 because the 25th triangular number is 325, the prime factorization of 325 is 5^2*13, and 5,13 are both congruent to 1 mod 4. It is the second such occurrence.
Links
- Frank M Jackson, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
lst={}; Do[p=1+8n;If[Union@Mod[First/@FactorInteger[p(p+1)/2], 4]=={1}, AppendTo[lst, p]], {n, 0, 10^3}]; lst Select[Range[2500],Union[Mod[FactorInteger[(#(#+1))/2][[;;,1]],4]]=={1}&] (* Harvey P. Dale, Aug 07 2025 *)
-
PARI
isok(k) = my(f=factor(k*(k+1)/2)[,1]~); #select(x->((x%4)==1), f) == #f; \\ Michel Marcus, Nov 22 2020
Comments