A337165 Number T(n,k) of compositions of n into k nonzero squares; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 0, 3, 0, 0, 1, 0, 0, 0, 0, 4, 0, 0, 1, 0, 0, 1, 0, 0, 5, 0, 0, 1, 0, 1, 0, 3, 0, 0, 6, 0, 0, 1, 0, 0, 2, 0, 6, 0, 0, 7, 0, 0, 1, 0, 0, 0, 3, 0, 10, 0, 0, 8, 0, 0, 1, 0, 0, 0, 1, 4, 0, 15, 0, 0, 9, 0, 0, 1
Offset: 0
Examples
Triangle T(n,k) begins: 1; 0, 1; 0, 0, 1; 0, 0, 0, 1; 0, 1, 0, 0, 1; 0, 0, 2, 0, 0, 1; 0, 0, 0, 3, 0, 0, 1; 0, 0, 0, 0, 4, 0, 0, 1; 0, 0, 1, 0, 0, 5, 0, 0, 1; 0, 1, 0, 3, 0, 0, 6, 0, 0, 1; 0, 0, 2, 0, 6, 0, 0, 7, 0, 0, 1; 0, 0, 0, 3, 0, 10, 0, 0, 8, 0, 0, 1; 0, 0, 0, 1, 4, 0, 15, 0, 0, 9, 0, 0, 1; ...
Links
- Alois P. Heinz, Rows n = 0..350, flattened
Crossrefs
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add((s-> `if`(s>n, 0, expand(x*b(n-s))))(j^2), j=1..isqrt(n))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)): seq(T(n), n=0..14);
-
Mathematica
b[n_] := b[n] = If[n == 0, 1, Sum[With[{s = j^2}, If[s>n, 0, Expand[x*b[n - s]]]], {j, 1, Sqrt[n]}]]; T[n_] := CoefficientList[b[n], x]; T /@ Range[0, 14] // Flatten (* Jean-François Alcover, Feb 07 2021, after Alois P. Heinz *)